of bars of any required size might be given without skill in the operator. Experience nevertheless has shewn, that the more fluid part is driven out much more effectually by the sudden action of a blow, than by the slower compression of a cylinder, which allows time for much of the fluid matter to extend itself within the mass. Various similar effects present themselves when cylinders for printing are substituted instead of planes. Instead of the action of dabbing, the colour is usually applied by simple and gradual contact, to much less effect; and the impression, though not essentially different from that of the block, is performed by a gradual action, which affords time for the cloth or paper to fold itself in a minute degree into the cavities of the sculpture. Hence it is found that the length of paper or cloth printed from a cylinder by a definite number of revolutions, will be greater or less than another piece manufactured precisely in the same way, but with a less or greater degree of pressure. In a block this defect is much less, not only from the considerable hold it takes upon the surface of the material, but also because the error is rectified at every successive application. One of the chief difficulties of cylinder printing consists, therefore, in the difficulty of laying one colour after another; and this would continue to be so even if the materials were not susceptible of change, the contrary to which is the fact. There are two projects for obviating this. The one consists in confining the whole piece to a long table, or to the circum. ference of a large cylinder; and causing the printing cylinder to move, not by the successive apposition of its carved surface, but of a bearing face regulated by a toothed wheel. The other method consists in the use of a frame to confine two or more cylinders, each provided with its own toothed wheel, and revolving against a large clothed cylinder provided with a suitable wheel to drive the others. The piece is caused to pass between the large cylinder and the others, in order to receive the impression. With regard to the first of these methods, it does not appear easy to confine paper, and still less cloth, in such a manner that its parts may continue without shift or wrinkle during the action of a cylinder, which not being allowed to roll without the check of a wheel, must draw the surface either the one way or the other. The difficulty of confinement will be very much increased by the indispensable requisite that the paper should be afterwards hung up to dry, and the callico be carried to the dye-house and the bleach-field, between the successive impressions, by which means the dimensions of both will be greatly altered. In the second method, it is observable that no colours can be printed but such as fall clear of each other. In this way, moreover, the gathering action of the cylinders may prove very mischievous. For, if we suppose the paper or cloth to pass between the great cylinder and the first printing roller by an action of the latter which tends to make it slip forward on the face of the great cylinder, and that when it arrives at the second printing roller it there experiences an action of a contrary nature, the consequence will be, that the material will become slack between the two rollers, and the fittings will be false. Not to dwell on that experience which brings forward this obstacle among others, its great probability may be deduced from the allowable supposition, that the circumference of the first printing cylinder should be one thousandth part of an inch too large, and that of the second the same quantity too small. For, in this case, the material will be shifted one-twentieth of an inch in fifty turns by the first cylinder, and the same quantity in the contrary direction by the second; a quantity upon the whole quite sufficient to destroy the effect of the colours in the progress of one single piece. Such minute differences can hardly be avoided in the first instance; in addition to which, we may place the varying dimensions of the printing cylinder, if not made of metal; and of the great clothed cylinder, which in effect has a larger or smaller diameter in proportion to the pressure which operates to render its elastic covering either thicker or thinner. The only method of diminishing these evils seems to be, that all the printing cylinders should, by dimension or pressure, or both, be made to draw the same way, the outer cylinder most, and the others gradually less and less, so that the material should have a tendency to apply itself more tightly during its passage through the apparatus, "The application of the colour to the surface of a cylinder block, is attended with some difficulty. An ingenious mechanic may contrive various means to produce the action of dabbing, if required. When a stuffed cylinder covered with cloth is made to revolve in the colour, and thence, after passing a scraper, to apply itself to the block cylinder, it is found to be no inconsiderable difficulty that its dimensions change, and its covering becomes wrinkled by the action of the scraper as well as that of the block. A better method, therefore, consists in a revolving web of woollen cloth, like a jack towel, stretched over three horizontal cylinders parallel to each other, two of which support the elastic surface of the web, which in its revolution accompanies the block cylinder; and the other serves to guide the same web to the colour, or a cylinder revolving in it. This method would be very easy and pleasant in its operation, if it were not for a property common to all straps which revolve on the surface of two or more wheels. These are observed always to seek the highest place; so that if a cutler's wheel were made with a groove to carry a strap, instead of a round edge, the strap would infallibly mount the ledge, instead of remaining in the groove. On this principle, the web would very speedily shift itself to one end of the cylinders, if it were not confined sideways, or the lower roller were not made considerably thickest in the middle, and gradually tapering towards its extremities. This last simple expedient is not without its difficulties; but, as I have not actually tried it, I shall defer entering into any discussion on that head. "The running of the paper or piece-goods towards one end of the leading cylinder is also one of the greatest difficulties attending this method of printing. It is not perfectly removed by tapering the leading cylinders. "The nature of the trade of paper-staining in this country, which requires a large sum to be immediately vested in the payment of the excise duty, and consequently prevents any considerable stock from being manufactured until orders are actually received, and the varying fashions in printed callicoes, which render the expence of cutting the block by far the heaviest part of the disbursement for printing, are probably the chief reasons why manufacturers in this country have been less solicitous for the construction of machines calculated to afford profit only in the case of very numerous impressions. The physical difficulties of this art have likewise conspired, in no small degree, to prevent its having been applied in the large way to any but a few simple designs of the sort called running patterns in one colour." — Nicholson's Journal, vol. i. 1797. The following is the statement respecting König's machine, which was the first that was made; it appeared in the Literary Gazette, with an engraving; and as that Gazette was at the time printed by Mr. Benjamin Bensley, at a machine, as well as from other circumstances, I am led to believe that the information contained in it was supplied by Mr. Bensley himself, and that, as far as it goes, it be relied upon. may "The cylindrical mode of printing, which, in contradistinction to the old process by the press, is called Machine Printing, was invented by the late Mr. Nicholson, well known in the scientific and literary world, who took out a patent in the year 1790, though it does not appear that his plans and experiments ended in any actually practical result. Whether M. König, who at a later period more successfully attempted to print by machinery, was indebted to Mr. Nicholson for his elementary principles, or whether almost the same ideas spontaneously occurred to each individual, is a question that can only be satisfactorily solved by the former. Thus much is certain, that M. König's labours were the first which produced any fruit:—and surely more is due to him who, after years of persevering toil, succeeds in the application of hitherto unapplied principles, than to one of whom we can only say that he was simply the first to suggest ideas since no evidence is offered of their ever having been acted upon. "M. König, by birth a Saxon, and by occupation a printer, many years ago conceived it possible to print by Steam, though he then expected no more than to be able to give accelerated speed to the common press, to which end his first efforts were bent. As from the nature of such an undertaking, considering the state of scientific pursuits in his native land, he could calculate on little success unaided by others, and failing in his application for encouragement and support at the hands of the most eminent printers in several of the continental capitals, he turned his eyes towards England. Arriving in London about 1804, he submitted his scheme to several printers of repute, who, not being disposed to incur the risk of property which a series of experiments was sure to entail, and perhaps placing little confidence in a successful issue, received his overtures very coolly and it is probable his applications in this country would have shared the fate of similar attempts abroad, had he not finally been introduced to Mr. Bensley senior, who, attracted by M. K.'s plans, speedily entered into an arrangement with him. After a short course of experiments on the fabrication of a press which should have accelerated motion, and at the same time render the work of the man who inks the type unnecessary, the above gentlemen were joined by Mr. G. Woodfall and Mr. R. Taylor, the former of whom however soon retired; the remaining three, in nowise discouraged by the tediousness and expense which all who are conversant with the progress of any invention in machinery well know to be unavoidable, persevered amidst unforeseen perplexities, which were doubtless not diminished by the parties' deficiency in practical mechanical knowledge. It was at length discovered that the intended improvement of the common press could not be brought to bear and that much labour and prodigious expence would be thrown away, unless more radical alterations were invented. Cylindrical printing was now thought of—and after some two or three years of renewed exertion, a small machine was brought forth, the characteristic of which was, that instead of the printing being produced by a flat impression (similar to the press) the sheet passed between a large roller and the types still flat; and in lieu of the old fashioned balls, used by hand to beat over the types and so to communicate the ink to their surface, skins were strained round smaller rollers, on which it was contrived to spread the ink, and under which the Form, i. e. the frame in which the types are fixed, passed in its way to the printing cylinder. Considerable promise of success attended this production; and after continued experiments, it was deemed practicable to extend the general principles to a more powerful machine. To print a newspaper was considered highly desirable—and on exhibiting to Mr. Walters, proprietor of the Times Newspaper, the Machine already erected, and shewing what further improvements were contemplated, an agreement was entered into with that gentleman for the erection of two large machines for printing his Journal. So secret had been the operations of the patentees, that the first public intimation of their invention was given to the reader of The Times on Monday the 28th of November, 1814, who was told that he then held in his hand one of many thousand impressions thrown off by steam. At this time but few persons knew of any attempt going on for the attainment of the above object; whilst among those connected with printing, it had often been talked of, but treated as chimerical. "The machines at the Times Office, cumbrous and complicated as subsequent improvements have made them appear, are yet in many respects admirably adapted to the purpose for which they were erected, and it is believed will outlast many contrivances for printing which have been since brought out. "The next advance in improvement was the manufacture of a machine for Messrs. Bensley, distinguished from those before mentioned by the mode of perfecting (or printing on both sides)—so that the sheet of white paper is placed in the feeder, and delivered from the machine printed on both sides! In addition to the essential difference between this machine and those previously made, it came forth with many obvious improvements, though still unquestionably complex: - and for the first attempt at effecting register (causing the pages to fall precisely on the back of one another) a greater degree of success than might have been expected was attained, subsequent experience shewing the many difficulties to be surmounted in the accomplishment of this object. Deficiencies were now detected in the inking: the strained skins were found uneven in their surface; and attempts were made to clothe the rollers with an elastic preparation of glue, treacle, &c. which has at length attained perfection. 66 By this time the invention had attracted the attention of various individuals, who thought the manufacture of printing machines an easier task than they afterwards found it to be; and far the greater number of attempts, we believe, failed almost as soon as undertaken. A machine, however, similar in its capacities to that last mentioned, but much more simple in its construction, has been brought out- under the direction of some eminent engineers. It was not long before these gentlemen were requested to apply their inking apparatus to Messrs. Bensley's machine; and at one stroke, as it were, forty wheels were removed so great was the simplification: and at the same time the defects of the former system, of communicating the ink to the types, were most effectually remedied. Massive and complicated as it was, yet as an immense expense had been incurred in its erection, Messrs. Bensley went on using their machine until the destruction of their establishment by fire in 1819. And even after the rebuilding of the premises, the machinery, which had been only partially damaged, was reinstated, and worked for some time:- it has now, however, given place to two large and admirable machines built on the improved plan, which when inspected by a judicious eye can only create wonder at the heretofore circuitous manner adopted to attain ends so apparently within easy reach. The writer has no hesitation in stating that the original machine contained upwards of one hundred wheels; whereas the new machine, with about ten wheels, accomplishes, in point of quantity, exactly the same object, and with a marked advantage in regard to the quality of the printing. Another important point respecting the new machine is, that it occupies scarcely half the space of the original one. "The printing machine in its present state appears susceptible of little improvement. It produces excellent work, and its movements are attended with certainty and despatchthe double, or perfecting, machine throwing off 800 to 1000 sheets, printed on both sides, within the hour, and the single machine delivering 1500 or 1600 done on one side: which, in cases where one form of the types (as in newspapers) is ready to be worked off while the last side is preparing, is attended with the greatest advantage, since the rate of delivery thereby becomes doubled. The first is that by which our Gazette is printed, and the last described is that with which Mr. B. Bensley is now (and has for a considerable time been) printing the Morning Chronicle newspaper. "Other leading daily newspapers are also wrought off by steam; as well as several publications of extensive circulation. Like almost every ingenious invention, this has had no small portion of prejudice to encounter, and perhaps has been longer in forcing its way than many other schemes of real utility. The various advantages, however, which it holds forth have attracted the attention of several proprietors of the more extensive printing concerns, who have introduced it with benefit to the public — to whom, by means of this great reduction of labour, the productions of the press may be furnished at a reduced rate of charge."— Literary Gazette, October 26, 1822. It may, perhaps, be allowable to make a few observations on this statement, more particularly as Mr. Nicholson is seldom spoken of in connexion with printing machines, and when he is, it is in such a manner as to convey the impression that he was a visionary man, who had some imaginary scheme in his head which he was incompetent to carry into effect. To rebut this opinion I have given the specification of his patent, with his own observations on his invention, which certainly do not discover any symptoms of a weak or a speculative man. I knew Mr. Nicholson personally, and I have no doubt that, had he lived, he would have carried his invention into effect; but he had a number of other pursuits which occupied his time. He published a work on navigation, which I have seen quoted as authority for its opinions; he was the author of a Dictionary of Chemistry, in two quarto volumes; he edited and published monthly Nicholson's Journal of Science, &c. which was in high repute; he wrote the Prospectus for the Royal Institution, on its establishment in 1799; and he likwise kept a large school in Soho Square, the leading feature of which was, a scientific education. I was, for ten years, in the habit of hearing in an undisguised manner the opinions of the most eminent scientific men in England, as I held the office of Assistant Secretary to the Board of Managers of the Royal Institution, (the Secretary being an honorary officer,) also that of Secretary to the Patrons of the Library, and Secretary to the Committee of Chemistry, as well as Superintendant of their Printing Office, and in all that time I never heard his name mentioned but with respect among these gentlemen, nor did I once hear him spoken of as a visionary who would project schemes that he was unable to execute. In addition to his multifarious pursuits, he was agent to the late Lord Camelford, whose sudden death left Mr. Nicholson involved in difficulties, from which he could never extricate himself. one Could this man, then, who planned the printing machine, and the manner of printing calico, &c. in an improved and expeditious manner, who moreover published the details of his process, with drawings of the requisite machines, be deemed, with justice, nothing more than " of whom we can only say that he was simply the first to suggest ideas," this being all the merit that is allowed him by the Literary Gazette? Now it appears to me that the term "suggesting ideas refers with rather more truth to Mr. König, who, coming to England with the idea of applying steam as the moving power to presses, and being supported by English capital, spent some years in unavailing efforts to reduce his ideas to practice, and when he could not succeed, gave up the attempt as one completely foiled, and turning round upon Mr. Nicholson's plan, produced a cylindrical printing machine. Dr. Olinthus Gregory, in a lecture delivered by him before the Mechanics Institution at Deptford, in 1826, among other topics illustrative of the patronage afforded to the arts and sciences by the intelligence and enterprise of this country, directed the attention of his audience to "the case of Mr. König, a truly ingenious foreigner, and his invention of an improved printing press, in which, by duly blending the alternating and rotatory principles of motion, the apparatus is capable of working off 1100 sheets an hour, with the superintendance of two boys. Tracing the history of his invention, of his difficulties, and of his want of encouragement, through the greater part of the continent of Europe, Mr. König says, 'I need hardly add, that scarcely ever was an invention brought to maturity under such circumstances. The well known fact, that almost every invention seeks, as it were, refuge in England, and is there brought to perfection, seems to indicate that the Continent has yet to learn from her the best manner of encouraging the mechanical arts. I had my full share in the ordinary disappointments of continental projectors; and, after having spent in Germany and Russia upwards of two years in fruitless applications, I proceeded to England.' "What could not be accomplished by the encouragement of princes on the Continent," proceeds Dr. Gregory, "was effected by the aid of private individuals in London. A few enterprising printers, and their names cannot be mentioned but with honour on such an occasion; Mr. Thomas Bensley, Mr. George Woodfall, and Mr. Richard Taylor, liberally assisted this ingenious foreigner in bringing his invention to maturity. The machine was set to work in April 1811, and 3000 copies of sheet H of the "New Annual Register for 1810," was printed by means of it. This was, doubtless, the first part of a book ever printed solely by a machine. Messrs. Bacon and Donkin were, it is true, simultaneously at work upon analogous contrivances, and, since then, other ingenious artists, especially Applegath and Cowper, have contributed greatly to the simplification of this class of machinery." In 1818, Messrs. Donkin and Bacon obtained a patent for a most ingenious but complex machine, which claims the merit of having been the first to print with a circular movement of the types. It is said that the invention of this machine was simultaneous with that of König. A great point was gained in it, for the composition inking rollers were first introduced in this machine, Mr. König's having rollers covered with leather, which were not found to answer the purpose so well. In this machine the patent specified the fastening of the pages of type to the surface of a prismatic cylinder having any number of planes from four to eight; to these types the ink was immediately supplied by a large elastic roller placed over the type cylinder, and made to rise and fall in accordance with the irregular motion of the surfaces of the latter; two other and smaller rollers conveying the ink from a receptacle to the larger roller. The sheet of paper to be printed was applied to another revolving prism, composed of segments of cylinders exactly adapted to meet the irregularities of the type roller. To insure the niceties and regularities of motion and of contact required in printing, toothed wheels, corresponding in shape to the prisms, were placed upon the axis; and however strange, at first sight, may appear to non-mechanical persons the working together of metal wheels of such angular shapes, yet by providing for a free vertical motion of the gudgeons of each roller, the operation of the whole machine was steady and uniform. The annexed diagram, representing a section of the principal parts, will enable the reader to form a more correct idea of this curious machine. A, the quadrangular prismatic roller, with its surfaces of stereotype plates. B, the roller for distributing the ink, which it receives from the two smaller rollers a e, in contact with the box i. C, the pressing cylinder, covered with cloth or felt. D E, the track of the paper in the direction of the arrows. |