Imágenes de páginas
PDF
EPUB

movement which wields it emanating, for the most part, from the shoulder, where the articulation partakes of the nature of a universal joint. The wing is beautifully twisted upon itself, and when it is elevated and advanced, it rolls up from the side of the bird at varying degrees of obliquity, till it makes a right angle with the body, when it presents a narrow or cutting edge to the water. The wing when fully extended, as in ordinary flight, makes, on the contrary, an angle of something like 30° with the horizon. When the wing is depressed and carried backwards,1 the angles which its under surface make with the surface of the water are gradually increased. The wing of the penguin and auk propels both when it is elevated and depressed. It acts very much after the manner of a screw; and this, as I shall endeavour to show, holds true likewise of the wing adapted for aërial flight.

Difference between Subaquatic and Aërial Flight.--The difference between subaquatic flight or diving, and flight proper, may be briefly stated. In aërial flight, the most effective stroke is delivered downwards and forwards by the under, concave, or biting surface of the wing which is turned in this direction; the less effective stroke being delivered in an upward and forward direction by the upper, convex, or nonbiting surface of the wing. In subaquatic flight, on the contrary, the most effective stroke is delivered downwards and backwards, the least effective one upwards and forwards. In aërial flight the long axis of the body of the bird and the short axis of the wings are inclined slightly upwards, and make a forward angle with the horizon. In subaquatic flight the long axis of the body of the bird, and the short axis of the wings are inclined slightly downwards and make a backward angle with the surface of the water. The wing acts more or less efficiently in every direction, as the tail of the fish does. The difference noted in the direction of the down stroke in flying and diving, is rendered imperative by the fact that a bird which flies in the air is heavier than the medium it navigates, and must be supported by the wings; whereas a bird which flies under the water or dives, is lighter than the water, and must

1 The effective stroke is also delivered during flexion in the shrimp, prawn, and lobster.

force itself into it to prevent its being buoyed up to the surface. However paradoxical it may seem, weight is necessary to aërial flight, and levity to subaquatic flight. A bird destined to fly above the water is provided with travelling surfaces, so fashioned and so applied (they strike from above, downwards and forwards), that if it was lighter than the air, they would carry it off into space without the possibility of a return; in other words, the action of the wings would carry the bird obliquely upwards, and render it quite incapable of flying either in a horizontal or downward direction. In the same way, if a bird destined to fly under the water (auk and penguin) was not lighter than the water, such is the configuration and mode of applying its travelling surfaces (they strike from above, downwards and backwards), they would carry it in the direction of the bottom without any chance of return to the surface. In aërial flight, weight is the power which nature has placed at the disposal of the bird for regulating its altitude and horizontal movements, a cessation of the play of its wings, aided by the inertia of its trunk, enabling the bird to approach the earth. In subaquatic flight, levity is a power furnished for a similar but opposite purpose; this, combined with the partial slowing or stopping of the wings and feet, enabling the diving bird to regain the surface at any moment. Levity and weight are auxiliary forces, but they are necessary forces when the habits of the aërial and aquatic birds and the form and mode of applying their travelling surfaces are taken into account. If the aërial flying bird was lighter than the air, its wings would require to be twisted round to resemble the diving wings of the penguin and auk. If, on the other hand, the diving, bird (penguin or auk) was heavier than the water, its wings would require to resemble aërial wings, and they would require to strike in an opposite direction to that in which they strike normally. From this it follows that weight is necessary to the bird (as at present constructed) destined to navigate the air, and levity to that destined to navigate the water. If a bird was made very large and very light, it is obvious that the diving force at its disposal would be inadequate to submerge it. If, again, it was made very small and very heavy, it is equally plain that it could not fly. Nature, however, has

flies under the water, relatively much heavier than the bird

struck the just balance; she has made the diving bird, which

[graphic]

FIG. 47.-At A the penguin is in the act of diving, and it will be observed that the anterior or thick margin of the
wing is directed downwards and forwards, while the posterior margin is directed upwards and backwards. This has
the effect of directing the under or ventral concave surface of the wing upwards and backwards, the most effective
stroke being delivered in a downward and backward direction. The efficacy of the wing in counteracting levity is
thus obvious. At B the penguin is in the act of regaining the surface of the water, and in this case the wing is
maintained in one position, or made to strike downwards and forwards like the aerial wing, the margins and under
surface of the pinion being reversed for this purpose. The object now is not to depress but to elevate the body.
Those movements are facilitated by the alternate play of the feet. (Compare fig. 47 with fig. 37, p. 76.)

of the former, while she has increased those of the latter.

which flies in the air, and has curtailed the travelling surfaces

For the same reason, she has furnished the diving bird with a certain degree of buoyancy, and the flying bird with a certain amount of weight-levity tending to bring the one to the surface of the water, weight the other to the surface of the earth, which is the normal position of rest for both. The action of the subaquatic or diving wing of the king penguin is well seen at p. 94, fig. 47.

From what has been stated it will be evident that the wing acts very differently in and out of the water; and this is a point deserving of attention, the more especially as it seems to have hitherto escaped observation. In the water the wing, when most effective, strikes downwards and backwards, and acts as an auxiliary of the foot; whereas in the air it strikes downwards and forwards. The oblique surfaces, spiral or otherwise, presented by animals to the water and air are therefore made to act in opposite directions, as far as the down strokes are concerned. This is owing to the greater density of the water as compared with the air, the former supporting or nearly supporting the animal moving upon or in it; the latter permitting the creature to fall through it in a downward direction during the ascent of the wing. To counteract the tendency of the bird in motion to fall downwards and forwards, the down stroke is delivered in this direction; the kite-like action of the wing, and the rapidity with which it is moved causing the mass of the bird to pursue a more or less horizontal course. I offer this explanation of the action of the wing in and out of the water after repeated and careful observation in tame and wild birds, and, as I am aware, in opposition to all previous writers on the subject.

The rudimentary wings or paddles of the penguin (the movements of which I had an opportunity of studying in a tame specimen) are principally employed in swimming and diving. The feet, which are of moderate size and strongly webbed, are occasionally used as auxiliaries. There is this difference between the movements of the wings and feet of this most curious bird, and it is worthy of attention. The wings act together, or synchronously, as in flying birds; the feet, on the other hand, are moved alternately. The wings are wielded with great energy, and, because of their

semi-rigid condition, are incapable of expansion. They therefore present their maximum and minimum of surface by a partial rotation or tilting of the pinion, as in the walrus, sea-bear, and turtle. The feet, which are moved with less vigour, are, on the contrary, rotated or tilted to a very slight extent, the increase and diminution of surface being secured by the opening and closing of the membranous expansion or web between the toes. In this latter respect they bear a certain analogy to the feet of the seal, the toes of which, as has been explained, spread out or divaricate during extension, and the reverse. The feet of the penguin entirely differ from those of the seal, in being worked separately, the foot of one side being flexed or drawn towards the body,

FIG. 48.-Swan, in the act of swimming, the right foot being fully expanded, and about to give the effective stroke, which is delivered outwards, downwards, and backwards, as represented at r of fig. 50; the left foot being closed, and about to make the return stroke, which is delivered in an inward, upward, and forward direction, as shown at s of fig. 50. In rapid swimming the swan flexes its legs simultaneously and somewhat slowly; it then vigorously extends them.-Original.

while its fellow is being extended or pushed away from. it. The feet, moreover, describe definite curves in opposite directions, the right foot proceeding from within outwards, and from above downwards during extension, or when it is fully expanded and giving the effective stroke; the left one, which is moving at the same time, proceeding from without inwards and from below upwards during flexion, or when it is folded up, as happens during the back stroke. In the acts of extension and flexion the legs are slightly rotated, and the

« AnteriorContinuar »