Imágenes de páginas
PDF
EPUB

as the majority of quadrupeds. The increase in the number of angles increases the power which an animal has of shortening and elongating its extremities, and the levers which the extremities form. To increase the length of a lever is to increase its power at one end, and the distance through which it moves at the other; hence the faculty of bounding or leaping possessed in such perfection by many quadrupeds.1 If the wing be considered as a lever, a small degree of motion at its root produces an extensive sweep at its tip. It is thus that the wing is enabled to work up and utilize the thin medium of the air as a buoying medium.

Another drawback to great speed in man is his erect position. Part of the power which should move the limbs is dedicated to supporting the trunk. For the same reason the bones of the legs, instead of being obliquely inclined to each other, as in the quadruped and bird, are arranged in a nearly vertical spiral line. This arrangement increases the angle formed by any two bones, and, as a consequence, decreases the speed of the limbs, as explained. A similar disposition of the bones is found in the anterior extremities of the elephant, where the superincumbent weight is great, and the speed, comparatively speaking, not remarkable. The bones of the human leg are beautifully adapted to sustain the weight of the body and neutralize shock.2 Thus the femur or thigh bone is furnished at its upper extremity with a ball-and-socket joint which unites it to the cup-shaped depression (acetabulum) in the ilium (hip bone). It is supplied with a neck which carries the body or shaft of the bone in an oblique direction from the ilium, the shaft being arched forward and twisted upon itself to form an elongated cylindrical screw. The lower extremity of the femur is furnished with spiral articular surfaces accurately adapted to the upper extremities of the bones of the leg, viz. the tibia and fibula, and to the patella. The bones of the leg (tibia and fibula) are spirally

1 "The posterior extremities in both the lion and tiger are longer, and the bones inclined more obliquely to each other than the anterior, giving them greater power and elasticity in springing."

2 "The pelvis receives the whole weight of the trunk and superposed organs, and transmits it to the heads of the femurs."

arranged, the screw in this instance being split up. At the ankle the bones of the leg are applied to those of the foot by spiral articular surfaces analogous to those found at the kneejoint. The weight of the trunk is thus thrown on the foot, not in straight lines, but in a series of curves. The foot itself is wonderfully adapted to receive the pressure from above. It consists of a series of small bones (the tarsal, metatarsal, and phalangeal bones), arranged in the form of a double arch; the one arch extending from the heel towards the toes, the other arch across the foot. The foot is so contrived that it is at once firm, elastic, and moveable,-qualities which enable it to sustain pressure from above, and exert pressure from beneath. In walking, the heel first reaches and first leaves the ground. When the heel is elevated the weight of the body falls more and more on the centre of the foot and toes, the latter spreading out1 as in birds, to seize the ground and lever the trunk forward. It is in this movement that the wonderful mechanism of the foot is displayed to most advantage, the multiplicity of joints in the foot all yielding a little to confer that elasticity of step which is so agreeable to behold, and which is one of the characteristics of youth. The foot may be said to roll over the ground in a direction from behind forwards. I have stated that the angles formed by the bones of the human leg are larger than those formed by the bones of the leg of the quadruped and bird. This is especially true of the angle formed by the femur with the ilium, which, because of the upward direction given to the crest of the ilium in man, is so great that it virtually ceases to be an angle.

1

The bones of the superior extremities in man merit attention from the fact that in walking and running they oscillate in opposite directions, and alternate and keep time with the legs, which oscillate in a similar manner. The arms are articulated at the shoulders by ball-and-socket joints to cup-shaped depressions (glenoid cavities) closely resembling those found at the hip-joints. The bone of the arm (humerus) is carried away

1 The spreading action of the toes is seen to perfection in children. It is more or less destroyed in adults from a faulty principle in boot and shoemaking, the soles being invariably too narrow.

from the shoulder by a short neck, as in the thigh-bone (femur). Like the thigh-bone it is twisted upon itself and forms a screw. The inferior extremity of the arm bone is furnished with spiral articular surfaces resembling those found at the knee. The spiral articular surfaces of the arm bone are adapted to similar surfaces existing on the superior extremities of the bones of the forearm, to wit, the radius and ulna. These bones, like the bones of the leg, are spirally disposed with reference to each other, and form a screw consisting of two parts. The bones of the forearm are united to those of the wrist (carpal) and hand (metacarpal and phalangeal) by articular surfaces displaying a greater or less degree of spirality. From this it follows that the superior extremities of man greatly resemble his inferior ones; a fact of considerable importance, as it accounts for the part taken by the superior extremities in locomotion. In man the arms do not touch the ground as in the brutes, but they do not on this account cease to be useful as instruments of progression. If a man walks with a stick in each hand the movements of his extremities exactly resemble those of a quadruped.

The bones of the human extremities (superior and inferior) are seen to advantage in fig. 26; and I particularly direct the attention of the reader to the ball-and-socket or universal joints by which the arms are articulated to the shoulders (x, x), and the legs to the pelvis (a, a'), as a knowledge of these is necessary to a comprehension of the oscillating or pendulum movements of the limbs now to be described. The screw configuration of the limbs is well depicted in the left arm (x) of the present figure. Compare with the wing of the bird, fig. 6, and with the anterior extremity of the elephant, fig. 7, p. 28. But for the ball-and-socket joints, and the spiral nature of the bones and articular surfaces of the extremities, the undulating, sinuous, and more or less continuous movements observable in walking and running, and the twisting, lashing, flail-like movements necessary to swimming and flying, would be impossible.

The leg in the human subject moves by three joints, viz., the hip, knee, and ankle joints. When standing in the erect position, the hip-joint only permits the limb to move forwards,

the knee-joint backwards, and the ankle-joint neither backwards nor forwards. When the body or limbs are inclined and

[ocr errors]
[graphic]

buth

[ocr errors]

FIG. 26. Skeleton of Man. Compare with fig. 4, p. 21, and fig. 24, p. 47.-Original.

obliquely, or slightly flexed, the range of motion is increased.

The greatest angle made at the knee-joint is equal to the sums of the angles made by the hip and ankle joints when these joints are simultaneously flexed, and when the angle of inclination made by the foot with the ground equals 30°.

From this it follows that the trunk maintains its erect position during the extension and flexion of the limbs. The step in walking was divided by Borelli into two periods, the one corresponding to the time when both limbs are on the ground; the other when only one limb is on the ground. In running, there is a brief period when both limbs are off the ground. In walking, the body is alternately supported by the right and left legs, and advanced by a sinuous movement. Its forward motion is quickened when one leg is on the ground, and slowed when both are on the ground. When the limb (say the right leg) is flexed, elevated, and thrown forward, it returns if left to itself (i.e. if its movements are not interfered with by the voluntary muscles) to the position from which it was moved, viz. the vertical, unless the trunk bearing the limb is inclined in a forward direction at the same time. The limb returns to the vertical position, or position of rest, in virtue of the power exercised by gravity, and from its being hinged at the hip by a ball-and-socket joint, as explained. In this respect the human limb when allowed to oscillate exactly resembles a pendulum, a fact first ascertained by the brothers Weber. The advantage accruing from this arrangement, as far as muscular energy is concerned, is very great, the muscles doing comparatively little work.1 In beginning to walk, the body and limb which is to take the first step are advanced together. When, however, the body is inclined forwards, a large proportion of the step is performed mechanically by the tendency which the pendulum formed by the leg has to swing forward and regain a vertical position, an effect produced by the operation of gravity alone. The leg which is advanced swings further forward than is required for the step, and requires to swing back a little before it can be deposited on the ground. The pendulum

1 The brothers Weber found that so long as the muscles exert the general force necessary to execute locomotion, the velocity depends on the size of the legs and on external forces, but not on the strength of the muscles.

« AnteriorContinuar »