Imágenes de páginas
PDF
EPUB

more striking. In 1676, a great number of observations of eclipses of Jupiter's satellites were accumulated, and could be compared with Cassini's Tables. Römer, a Danish astronomer, whom Picard had brought to Paris, perceived that these eclipses happened constantly later than the calculated time at one season of the year, and earlier at another season;—a difference for which astronomy could offer no account. The error was the same for all the satellites; if it had depended on a defect in the Tables of Jupiter, it might have affected all, but the effect would have had a reference to the velocities of the satellites. The cause, then, was something extraneous to Jupiter. Römer had the happy thought of comparing the error with the earth's distance from Jupiter, and it was found that the eclipses happened later in proportion as Jupiter was further off. Thus we see the eclipse later, as it is more remote; and thus light, the messenger which brings us intelligence of the occurrence, travels over its course in a measurable time. By this evidence, light appeared to take about eleven minutes in describing the diameter of the earth's orbit.

6

This discovery, like so many others, once made, appears easy and inevitable; yet Dominic Cassini had entertained the idea for a moment, and had rejected it; and Fontenelle had congratulated himself publicly on having narrowly escaped this seductive error. The objections to the admission of the truth arose principally from the inaccuracy of observation, and from the persuasion that the motions of the satellites were circular and uniform. Their irregularities disguised the fact in question. As these irregularities became clearly known, Römer's discovery was finally established, and the "Equation of Light" took its place in the Tables.

Sect. 3.-Discovery of Aberration.-Bradley.

IMPROVEMENTS in instruments, and in the art of observing, were requisite for making the next great step in tracing the effect of the laws of light. It appears clear, on consideration, that since light and the spectator on the earth are both in motion, the apparent direction of an object will be determined by the composition of these motions. But yet the effect of this composition of motions was (as is usual in such cases) traced as a fact in observation, before it was clearly seen as a consequence of reasoning. This fact, the Aberration of Light, the greatest astronomical discovery of the eighteenth century, belongs to Bradley,

[blocks in formation]
[ocr errors]

who was then Professor of Astronomy at Oxford, and afterwards Astronomer Royal at Greenwich. Molyneux and Bradley, in 1725, began a series of observations for the purpose of ascertaining, by observations near the zenith, the existence of an annual parallax of the fixed stars, which Hooke had hoped to detect, and Flamsteed thought he had discovered. Bradley' soon found that the star observed by him had a minute apparent motion different from that which the annual parallax would produce. He thought of a nutation of the earth's axis as a mode of accounting for this; but found, by comparison of a star on the other side of the pole, that this explanation would not apply. Bradley and Molyneux then considered for a moment an annual alteration of figure in the earth's atmosphere, such as might affect the refractions, but this hypothesis was soon rejected. In 1727, Bradley resumed his observations, with a new instrument, at Wanstead, and obtained empirical rules for the changes of declination of different stars. At last, accident turned his thoughts to the direction in which he was to find the cause of the variations which he had discovered. Being in a boat on the Thames, he observed that the vane on the top of the mast gave a different apparent direction to the wind, as the boat sailed one way or the other. Here was an image of his case: the boat represented the earth moving in different directions at different seasons, and the wind represented the light of a star. He had now to trace the consequences of this idea; he found that it led to the empirical rules, which he had already discovered, and, in 1729, he gave his discovery to the Royal Society. His paper is a very happy narrative of his labors and his thoughts. His theory was so sound that no astronomer ever contested it; and his observations were so accurate, that the quantity which he assigned as the greatest amount of the change (one nineteenth of a degree) has hardly been corrected by more recent astronomers. It must be noticed, however, that he considered the effects in declination only; the effects in right ascension required a different mode of observation, and a consummate goodness in the machinery of clocks, which at that time was hardly attained.

Sect. 4.-Discovery of Nutation.

WHEN Bradley went to Greenwich as Astronomer Royal, he continued with perseverance observations of the same kind as those by which he had detected Aberration. The result of these was another

Rigaud's Bradley.

VOL. I.-80

Rigaud, p. xxiii.

discovery; namely, that very Nutation which he had formerly rejected. This may appear strange, but it is easily explained. The aberration is an annual change, and is detected by observing a star at different seasons of the year: the Nutation is a change of which the cycle is eighteen years; and which, therefore, though it does not much change the place of a star in one year, is discoverable in the alterations of several successive years. A very few years' observations showed Bradley the effect of this change; and long before the half cycle of nine years had elapsed, he had connected it in his mind with the true cause, the motion of the moon's nodes. Machin was then Secretary to the Royal Society,10 and was "employed in considering the theory of gravity, and its consequences with regard to the celestial motions:" to him Bradley communicated his conjectures; from him he soon received a Table containing the results of his calculations; and the law was found to be the same in the Table and in observation, though the quantities were somewhat different. It appeared by both, that the earth's pole, besides the motion which the precession of the equinoxes gives it, moves, in eighteen years, through a small circle;—or rather, as was afterwards found by Bradley, an ellipse, of which the axes are nineteen and fourteen seconds."

For the rigorous establishment of the mechanical theory of that effect of the moon's attraction from which the phenomena of Nutation flow, Bradley rightly and prudently invited the assistance of the great mathematicians of his time. D'Alembert, Thomas Simpson, Euler, and others, answered this call, and the result was, as we have already said in the last chapter (Sect. 7), that this investigation added another to the recondite and profound evidences of the doctrine of universal gravitation.

It has been said that Bradley's discoveries "assure him the most distinguished place among astronomers after Hipparchus and Kepler." If his discoveries had been made before Newton's, there could have been no hesitation as to placing him on a level with those great men. The existence of such suggestions as the Newtonian theory offered on all astronomical subjects, may perhaps dim, in our eyes, the brilliance of Bradley's achievements; but this circumstance cannot place any other person above the author of such discoveries, and therefore we may consider Delambre's adjudication of precedence as well warranted, and deserving to be permanent.

[blocks in formation]

Sect. 5.-Discovery of the Laws of Double Stars.-The two

Herschels.

No truth, then, can be more certainly established, than that the law of gravitation prevails to the very boundaries of the solar system. But does it hold good further? Do the fixed stars also obey this universal sway? The idea, the question, is an obvious one-but where are we to find the means of submitting it to the test of observation?

If the Stars were each insulated from the rest, as our Sun appears to be from them, we should have been quite unable to answer this inquiry. But among the stars, there are some which are called Double Stars, and which consist of two stars, so near to each other that the telescope alone can separate them. The elder Herschel diligently observed and measured the relative positions of the two stars in such pairs; and as has so often happened in astronomical history, pursuing one object he fell in with another. Supposing such pairs to be really unconnected, he wished to learn, from their phenomena, something respecting the annual parallax of the earth's orbit. But in the course of twenty years' observations he made the discovery (in 1803) that some of these couples were turning round each other with various angular velocities. These revolutions were for the most part so slow that he was obliged to leave their complete determination as an inheritance to the next generation. His son was not careless of the bequest, and after having added an enormous mass of observations to those of his father, he applied himself to determine the laws of these revolutions. A problem so obvious and so tempting was attacked also by others, as Savary and Encke, in 1830 and 1832, with the resources of analysis. But a problem in which the data are so minute and inevitably imperfect, required the mathematician to employ much judgment, as well as skill in using and combining these data; and Sir John Herschel, by employing positions only of the line joining the pair of stars (which can be observed with comparative exactness), to the exclusion of their distances (which cannot be measured with much correctness), and by inventing a method which depended upon the whole body of observations, and not upon selected ones only, for the determination of the motion, has made his investigations by far the most satisfactory of those which have appeared. The result is, that it has been rendered very probable, that in several of the double stars the two stars describe ellipses about each other; and therefore that here also, at an immeas

urable distance from our system, the law of attraction according to the inverse square of the distance, prevails. And, according to the practice of astronomers when a law has been established, Tables have een calculated for the future motions; and we have Ephemerides of the revolutions of suns round each other, in a region so remote, that the whole circle of our earth's orbit, if placed there, would be imperceptible by our strongest telescopes. The permanent comparison of the observed with the predicted motions, continued for more than one revolution, is the severe and decisive test of the truth of the theory; and the result of this test astronomers are now awaiting.

[2d Ed.] [In calculating the orbits of revolving systems of double stars, there is a peculiar difficulty, arising from the plane of the orbit being in a position unknown, but probably oblique, to the visual ray. Hence it comes to pass that even if the orbit be an ellipse described about the focus by the laws of planetary motion, it will appear otherwise; and the true orbit will have to be deduced from the apparent

one.

With regard to a difficulty which has been mentioned, that the two stars, if they are governed by gravity, will not revolve the one about the other, but both about their common centre of gravity;—this circumstance adds little difficulty to the problem. Newton has shown (Princip. lib. i. Prop. 61) in the problem of two bodies, the relation between the relative orbits and the orbit about the common centre of gravity.

How many of the apparently double stars have orbitual motions? Sir John Herschel in 1833 gave, in his Astronomy (Art. 606), a list of nine stars, with periods extending from 43 years (n Corona) to 1200 years (y Leonis), which he presented as the chief results then obtained in this department. In his work on Double Stars, the fruit of his labors in both hemispheres, which the astronomical world are looking for with eager expectation, he will, I believe, have a few more to add to these.

Is it well established that such double stars attract each other according to the law of the inverse square of the distance? The answer to this question must be determined by ascertaining whether the above cases are regulated by the laws of elliptical motion. This is a matter which it must require a long course of careful observation to determine in such a number of cases as to prove the universality of the rule. Perhaps the minds of astronomers are still in suspense upon the subject. When Sir John Herschel's work shall appear, it will probably

« AnteriorContinuar »