Imágenes de páginas
PDF
EPUB
[merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small]

is 1, and that of its first, second, &c. principal minors are

[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][subsumed][ocr errors][merged small][merged small][merged small][ocr errors][subsumed][merged small][ocr errors][ocr errors][ocr errors][merged small][ocr errors][ocr errors][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][subsumed][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][merged small]

1633. Prove that the determinant

1, cos a, cos (a + B), cos (a + B + y)|
cos (B+y+8), 1, cos ß, cos (B+y)
cos (y+8), cos (y+d+a), 1, cos y

cos 8, cos (8+ a), cos (8+a+ẞ), 1

and all its first minors, will vanish when a +B+y+8=2π.

1634. Prove that, if u denote the determinant of the nth order,

[blocks in formation]

n+1

[ocr errors]
[ocr errors]

==

[blocks in formation]

0; and thence (or otherwise) obtain its value in one of the three equivalent forms

[blocks in formation]

(2) sin (n + 1) a ÷ sin a, where 2 cos a = a,

(3) (pr+1 − q′′+1) ÷ (p −q), where p, q are the roots of x2 - ax + 1 = 0.

1635. Prove that

(1) |1-n, 1, 1, 10, n being the order of the determinant;

......

1, 1-n, 1, ...... 1

1, 1, 1-n,

1

[merged small][ocr errors][merged small][merged small][merged small][merged small]

1, 1,.... (3)x,, 1, 1,

1, 2, 1,

1, 1, 23,

......

[merged small][ocr errors]

1

1

[ocr errors]

1=P-P-2+2P-3-3P-4+...+(-1)"1 (n - 1),

1 where x, 21

1

...

x are roots of the equation x" - P1x"1 + P ̧x-9 — ... +(-1)"p. = 0;

[merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][merged small]
[merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small]

1639. Prove that, if u denote the determinant of the nth order,

[ocr errors]
[merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][merged small]

41 + 1 = au + au- 1 --= 0; and express the developed determinant in

the forms

(1) "+1", -1, where v ̧ = (a − 1)* − (n − 1) (a − 1)*-'

a-3

[blocks in formation]

(a1).......

+1

(2) {p"+2-p"+1 - p − q2+2 + q*+1 + q} ÷ (p − q) (p + q − 2),

where p, q are the roots of the equation x2 - (a− 1) x + 1 = 0;

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small]

1640. Prove that, if u denote the determinant of the nth order,

[merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][ocr errors][ocr errors][merged small][ocr errors][ocr errors][merged small][subsumed][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small]

-1

ƒ (x) = x′′ − a ̧x′′-1 + α ̧μ ̃ ̄2 — ...... + (− 1)'a ̧ = 0,

[ocr errors][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][merged small][merged small][ocr errors][merged small][merged small][ocr errors][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small][ocr errors][merged small][merged small]

is equal to 1; the second row being formed by differentiating the first with respect to x,, the third by differentiating the second with respect tox, and so on.

DIFFERENTIAL CALCULUS.

1642. Having given

sin x sin (a + x) sin (2a + x) ... sin {(n − 1) a + x} = 21-" sin nx, where n is a whole number and na: prove that

(1) cot x + cot (a + x) + cot (2a + x) +

[ocr errors]

(2) cot3x+cot' (a+x)+cot2 (2a +x) + ...

+cot {(n − 1) a +x} = n cot nx,

[blocks in formation]

1643. Prove that the limit of (cos x) cotax, as x tends to zero, is € ̄1.

dy

1644. Prove that the equation (1-x)

xy+1=0 is satisfied

dx

either by

y√1-x=cos1x, or by y√x-1=log (x + √x2 − 1).

1645. Prove that the equation

[ocr errors][ocr errors][ocr errors][subsumed]

is satisfied by any one of the four functions

C' (√1+x3±1)3, C′′ (√1+x2±x)3,

and therefore by the sum of the four functions each with an arbitrary multiplier; and account for the apparent anomaly.

[blocks in formation]
« AnteriorContinuar »