Imágenes de páginas
PDF
EPUB

the planetary bodies are at very great distances from one another, and their masses, compared with the mass of the sun, very small.

Taking the theory of gravitation in its universal acceptation, Newton, in a manner that looks as if Results of the he were divinely inspired, succeeded in demon- theory of graatrating the chief inequalities of the moon and planetary bodies; in determining the figure of the earth

—that it is not a perfect sphere, but an oblate spheroid; in explaining the precession of the equinoxes and the tides of the ocean. To such perfection have succeeding mathematicians brought his theory, that the most complicated movements and irregnlarities of the solar system have been satisfactorily accounted for and reduced to computation. Trusting to these principles, not only has it been found possible, knowing the mass of a given planet, to determine the perturbations it may produce in adjacent ones, but even the inverse problem has been successfully attacked, and from the perturbations the place and mass of a hitherto unknown planet determined. It was thus that, from the deviations of Uranus from his theoretical place, the neces sary existence of an exterior disturbing planet was foreseen, and our times have witnessed the intellectual triumph of mathematicians directing where the telescope should point in order to find a new planet. The discovery of Neptune was thus accomplished.

It adds to our admiration of the wonderful intellectual powers of Newton to know that the mathematical instrument he used was the ancient geometry. Not until subsequently was the analytical method resorted to and cultivated. This method possesses the inappreciable advantage of relieving us from the mental strain which would otherwise oppress us. It has been truly said that the symbols think for us. Mr. Whewell observes : “No one for sixty years after the publication of the The “Princi• Principia,' and, with Newton's methods, no one pia;” its in

comparable up to the present day, has added any thing of merit. value to his deductions. We know that he calculated all the principal lunar inequalities ; in many of the cases be has given us his processes, in others only his results. But who has presented in his beautiful geometry or deduced over it to be nears that the law But the heliocentric and star

from his simple principles any of the inequalities which he left untouched ? The ponderous instrument of synthesis, so effective in his hands, has never since been grasped by any one who conld use it for such purposes ; and we gaze at it with admiring curiosity, as on some gigantic implement of war which stands idle among the memorials of ancient days, and makes us wonder what manner of man he was who could wield as a weapon what we can hardly lift as a burden.” Such was the physical meaning of Newton's discoveries ;

their philosophical meaning was of even greater Philosophical import of

cal importance. The paramount truth was resistNewton's lessly coming into prominence, that the governdiscoveries.

ment of the solar system is under necessity, and that it is mathematically impossible for the laws presiding over it to be other than they are.

Thus it appears that the law of gravitation holds good throughout our solar system. But the heliocentric theory, in its most general acceptation, considers every fixed star

as being, like the sun, a planetary centre. Hence, Unity of idea in the con before it can be asserted that the theory of struction of gravitation is truly universal, it must be shown the universe.

e that it holds good in the case of all other such systems. The evidence offered in proof of this is altogether based upon the observations of the two Herschels on the motions of the double stars. Among the stars there are some in such close proximity to each other that Sir W. Herschel was led to suppose it would be possible, from observations upon them, to ascertain the stellar parallax. While engaged in these inquiries, which occupied him for many years, he discovered that many of these stars are not merely optically in proximity, as being accidentally in the same line of view, but are actually connected physically, revolving round each other in regular orbits. The motion of these double suns is, however, in many instances so slow as to require many years for a satisfactory determination. Sir J. Herschel therefore continued the obserGravitation of vations of his father, and with other mathedouble stars. maticians, investigated the characteristics of these motions. The first instance in which the true elliptic elements of the orbit of a binary star were determined

was given by M. Savary in the case of $ Ursa Majoris, indicating an elliptic orbit of 584 years. But the period of others, since determined, is very much longer; thus, in o Coronæ, it is, according to Mr. Hind, more than 736 years. From the fact that the orbits in which these stars move round each other are elliptical, it necessarily follows that the law of gravitation, according to the inverse square, holds good in them. Considering the prodigious distances of these bodies, and the departure, as regards structure of the systems to which they belong, from the conditions obtaining in our unisolar system, we may perhaps assert the prevalence of the law of gravitation throughout the universe.

If, in association with these double suns—sometimes, indeed, they are triple, and occasionally, as in the case of € Lyræ, quadruple—there are opaque planetary globes, such solar systems differ from ours not only in having several suns instead of a single one, but, since the light emitted is often of different tints, one star shining with a crimson and another with a blue light, of double the colours not always complementary to one stars. another, a wonderful variety of phenomena must be the result, especially in their organic creations ; for organic forms, both vegetable and animal, primarily depend on the relations of coloured light. How varied the effects where there are double, triple, or even quadruple sunrises, and sunsets, and noons, and the hours marked off by red, or purple, or blue tints.

It is impossible to look back on the history of the theory of gravitation without sentiments of admiration and, indeed, of pride. How felicitous Newton's has been the manner in which have been ex- discoveries. plained the inequalities of a satellite like the moon under the disturbing influence of the sun; the correspondence between the calculated and observed quantities of these inequalities; the extension of the doctrine to satellites of other planets, as those of Jupiter; the determination of the earth's figure; the causes of the tides; the different force of gravity in different latitudes, and a multitude of other phenomena. The theory asserted for itself that authority which belongs to intrinsic truth. It enabled

Granden

mathematicians to point out facts not yet observed, and to foretell future events.

And yet how hard it is for truth to force its way when bigotry resists. In 1771, the University of Salamanca, being urged to teach physical science, refused, and this was its answer; “Newton teaches nothing that would make a good logician or metaphysician ; and Gassendi and Descartes do not agree so well with revealed truth as Aristotle does.”

Among the interesting results of Newton's theory may be mentioned its application to secular inequalities, such The earth in as the acceleration of the moon's mean motion, time. that satellite moving somewhat quicker now than she did ages ago. Laplace detected the cause of this phenomenon in the influence of the sun upon the moon, combined with the secular variation of the eccentricity of the earth's orbit. Moreover, he showed that this secular inequality of the motion of the moon is periodical, that it requires millions of years to re-establish itself, and that, after an almost inconceivable time, the acceleration becomes a retardation. In like manner, the same mathematician explained the observed acceleration in the mean motion of Jupiter, and retardation of that of Saturn, as arising from the mutual attraction of the two planets, and showed that this secular inequality has a period of 9294 years. With such slow movements may be mentioned the diminution of the obliquity of the ecliptic, which has been proceeding for ages, but which will reach a limit and then commence to increase. These secular motions ought not to be without interest to those who suffer themselves to adopt the patristic chronology of the world, who suppose that the earth is only six thousand years old, and that it will come to an end in about one thousand years more. They must accept, along with that preposterous delusion, its necessary consequences, that the universe has been so badly constructed, and is such a rickety machine, that it can not hold together long enough for some of its wheels to begin to revolve. Astronomy offers us many illustrations of the scale upon which the world is constructed as to time, as well as that upon which it is constructed as to space.

From what has been said, the conclusion forces itself

arred acce of that

planets, a

fan

deas.

upon us that the general laws obtaining as respects the earth, hold good likewise for all other parts Dominion of of the universe; a conclusion sustained not law in the only by the mechanism of such motions as universe. we have been considering, but also by all evidence of a physical kind accessible to us. The circumstances under which our sun emits light and heat, and thereby vivifies his attendant planets, are indisputably the same as those obtaining in the case of every fixed star, each of which is a self-luminous sun. There is thus an aspect of homogeneousness in the structure of all systems in the universe, which, though some have spoken of it as if it were the indication of a uniformity of plan, and therefore the evidence of a primordial idea, is rather to be looked upon as the proof of unchangeable and resistless law.

What, therefore, now becomes of the doctrine authoritatively put forth, and made to hold its sway for Ruin so many centuries, that the earth is not only the thropocentric central-body of the universe, but in reality, the deal most noble body in it; that the sun and other stars are mere ministers or attendants for human use? In the place of these utterly erroneous and unworthy views, far different conceptions must be substituted. Man, when he looks upon the countless multitude of stars—when he reflects that all he sees is only a little portion of those which exist, yet that each is a light and life-giving sun to multitudes of opaque, and therefore, invisible worlds-when he considers the enormous size of these various bodies and their immeasurable distance from one another, may form an estimate of the scale on which the world is constructed, and learn therefrom his own unspeakable insignificance.

In one beat of a pendulum a ray of light would pass eight times round the circumference of the earth.

Aids for meaThus we may take the sunbeam as a carpenter surements in does his measuring-rule; it serves as a gauge in e our measurements of the universe. A sunbeam would re quire more than three years to reach us from a Centauri ; nine and a quarter years from 61 Cygni; from a Lyræ twelve years. These are stars whose parallax has been determined, and which are therefore rearest to us.

iverse.

« AnteriorContinuar »