Imágenes de páginas
PDF
EPUB

have seen, immediately associated with nummulitic strata charged with fossils characteristic of a warm climate. Referring to this Sir Charles Lyell says, "To imagine icebergs carrying such huge fragments of stone in so southern a latitude, and at a period immediately preceded and followed by the signs of a warm climate, is one of the most perplexing enigmas which the geologist has yet been called upon to solve."*

It is perfectly true that, according to the generally received theories of the cause of a glacial climate the whole is a perplexing enigma, but if we adopt the Secular theory of change of climate, every difficulty disappears. According to this theory the very fact of the conglomerate being formed at a period immediately preceded and succeeded by warm conditions of climate, is of itself strong presumptive evidence of the conglomerate being a glacial formation. But this is not all, the very highness of the temperature of the preceding and succeeding periods bears testimony to the severity of the intervening glacial period. Despite the deficiency of direct evidence regarding the character of the Miocene and Eocene glacial periods, we are not warranted, for reasons which have been stated in Chapter XVII., to conclude that these periods were less severe than the one which happened in Quaternary times. Judging from indirect evidence, we have some grounds for concluding that the Miocene glacial epoch at least was even more severe and protracted than our recent glacial epoch.

By referring to Table I., or the accompanying diagram, it will be seen that prior to the period which I have assigned as that of the glacial epoch, there are two periods when the eccentricity almost attained its superior limit. The first period occurred 2,500,000 years ago, when it reached 0.0721, and the second period 850,000 years ago, when it attained a still higher value, viz., 0.0747, being within 0.0028 of the superior limit. To the first of these periods I am disposed to assign the glacial epoch of Eocene times, and to the second that of the Miocene age. With the view of determining the character of these

"Principles," p. 210. Eleventh Edition.

periods Tables II. and III. have been computed. They give the eccentricity and longitude of perihelion at intervals of 10,000 years. It will be seen from Table II. that the Eocene period extends from about 2,620,000 to about 2,460,000 years ago; and from Table III. it will be gathered that the Miocene period lasted from about 980,000 to about 720,000 years ago.

In order to find whether the eccentricity attained a higher value about 850,000 years ago than 0.0747, I computed the values for one or two periods immediately before and after that period, and satisfied myself that the value stated was indeed the highest, as will be seen from the subjoined table :

[ocr errors]
[blocks in formation]

How totally different must have been the condition of the earth's climate at that period from what it is at present! Taking the mean distance of the sun to be 91,400,000 miles, his present distance at mid-winter is 89,864,480 miles; but at the period in question, when the winter solstice was in perihelion, his distance at mid-winter would be no less than 98,224,289 miles. But this is not all; our winters are at present shorter than our summers by 7·8 days, but at that period they would be longer than the summers by 34-7 days.

At present the difference between the perihelion and aphelion distance of the sun amounts to only 3,069,580 miles, but at the period under consideration it would amount to no less than 13,648,579 miles !

CHAPTER XXII.

A METHOD OF DETERMINING THE MEAN THICKNESS OF THE

SEDIMENTARY ROCKS OF THE GLOBE.

Prevailing Methods defective.-Maximum Thickness of British Rocks.-Three Elements in the Question.-Professor Huxley on the Rate of Deposition.Thickness of Sedimentary Rocks enormously over-estimated.-Observed Thickness no Measure of mean Thickness.-Deposition of Sediment principally along Sea-margin.-Mistaken Inference regarding the Absence of a Formation.-Immense Antiquity of existing Oceans.

VARIOUS attempts have been made to measure the positive length of geological periods. Some geologists have sought to determine, roughly, the age of the stratified rocks by calculations based upon their probable thickness and the rate at which they may have been deposited. This method, however, is worthless, because the rates which have been adopted are purely arbitrary. One geologist will take the rate of deposit at a foot in a hundred years, while another will assume it to be a foot in a thousand or perhaps ten thousand years; and, for any reasons that have been assigned, the one rate is just as likely to be correct as the other: for if we examine what is taking place in the ocean bed at the present day, we shall find in some places a foot of sediment laid down in a year, while in other places a foot may not be deposited in a thousand years. The stratified rocks were evidently formed at all possible rates. When we speak of the rate of their formation, we must of course refer to the mean rate; and it is perfectly true that if we knew the thickness of these rocks and the mean rate at which they were deposited, we should have a ready means of determining their positive age. But there appears to be nearly as great uncertainty regarding the thickness of the sedimentary rocks as

On this point Whatever the

regarding the rate at which they were formed. No doubt we can roughly estimate their probable maximum thickness; for instance, Professor Ramsay has found from actual measurement, that the sedimentary formations of Great Britain have a maximum thickness of upwards of 72,000 feet; but all such measurements give us no idea of their mean thickness. What is the mean thickness of the sedimentary rocks of the globe? geology does not afford a definite answer. present mean thickness of the sedimentary rocks of our globe may be, it must be small in comparison to the mean thickness of all the sedimentary rocks which have been formed. This is obvious from the fact that the sedimentary rocks of one age are partly formed from the destruction of the sedimentary rocks of former ages. From the Laurentian age down to the present day, the stratified rocks have been undergoing constant denudation.

Unless we take into consideration the quantity of rock removed during past ages by denudation, we cannot-even though we knew the actual mean thickness of the existing sedimentary rocks of the globe, and the rate at which they were formed-arrive at an estimate regarding the length of time represented by these rocks. For if we are to determine the age of the stratified rocks from the rate at which they were formed, we must have, not the present quantity of sedimentary rocks, but the present plus the quantity which has been. denuded during past ages. In other words, we must have the absolute quantity formed. In many places the missing beds must have been of enormous thickness. The time represented by beds which have disappeared is, doubtless, as already remarked, much greater than that represented by the beds which now remain. The greater mass of the sedimentary rocks has been formed out of previously existing sedimentary rocks, and these again out of sedimentary rocks still older. As the materials composing our stratified beds may have passed through many cycles of destruction and re-formation, the time required to have deposited at a given rate the present existing mass of

sedimentary rocks may be but a fraction of the time required to have deposited at the same rate the total mass that has actually been formed. To measure the age of the sedimentary rocks by the present existing rocks, assumed to be formed at some given rate, even supposing the rate to be correct, is a method wholly fallacious.

66

"The aggregate of sedimentary strata in the earth's crust,” says Sir Charles Lyell, can never exceed in volume the amount of solid matter which has been ground down and washed away by rivers, waves, and currents. How vast, then, must be the spaces which this abstraction of matter has left vacant! How far exceeding in dimensions all the valleys, however numerous, and the hollows, however vast, which we can prove to have been cleared out by aqueous erosion!

I presume there are few geologists who would not admit that if all the rocks which have in past ages been removed by denudation were restored, the mean thickness of the sedimentary rocks of the globe would be at least equal to their present maximum thickness, which we may take at 72,000 feet.

There are three elements in the question; of which if two are known, the third is known in terms of the other two. If we have the mean thickness of all the sedimentary rocks which have been formed and the mean rate of formation, then we have the time which elapsed during the formation; or having the thickness and the time, we have the rate; or, having the rate and the time, we have the thickness.

One of these three, namely, the rate, can, however, be determined with tolerable accuracy if we are simply allowed to assume-what is very probable, as has already been shownthat the present rate at which the sedimentary deposits are being formed may be taken as the mean rate for past ages. If we know the rate at which the land is being denuded, then we know with perfect accuracy the rate at which the sedimentary deposits are being formed in the ocean. This is obvious, because all the materials denuded from the land are deposited in * "Principles," vol. i., p. 107. Tenth Edition.

« AnteriorContinuar »