Imágenes de páginas
PDF
EPUB

BOOK VI.

CHAPTER XXXI.

REFLECTIONS ON THE RESULTS AND LIMITS OF

SCIENTIFIC METHOD.

BEFORE concluding a work on the Principles of Science, it will not be inappropriate to add some remarks upon the limits and ultimate bearings of the knowledge which we may acquire by the employment of scientific method. All science consists, it has several times been stated, in the detection of identities in the action of natural agents. The purpose of inductive inquiry is to ascertain the apparent existence of necessary connection between causes and effects, expressed in the form of natural laws. Now so far as we thus learn the invariable course of nature, the future becomes the necessary sequel of the present, and we are brought beneath the sway of powers with which nothing can interfere.

By degrees it is found, too, that the chemistry of organised substances is not entirely separated from, but is continuous with, that of earth and stones. Life seems to be nothing but a special form of energy which is manifested in heat and electricity and mechanical force. The time may come, it almost seems, when the tender mechanism of the brain will be traced out, and every thought reduced to the expenditure of a determinate weight of

nitrogen and phosphorus. No apparent limit exists to the success of scientific method in weighing and measuring, and reducing beneath the sway of law, the phenomena both of matter and of mind. And if mental phenomena be thus capable of treatment by the balance and the micrometer, can we any longer hold that mind is distinct from matter? Must not the same inexorable reign of law which is apparent in the motions of brute matter be extended to the subtle feelings of the human heart? Are not plants and animals, and ultimately man himself, merely crystals, as it were, of a complicated form? If so, our boasted free will becomes a delusion, moral responsibility a fiction, spirit a mere name for the more curious manifestations of material energy. All that happens, whether right or wrong, pleasurable or painful, is but the outcome of the necessary relations of time and space and force.

Materialism seems, then, to be the coming religion, and resignation to the nonentity of human will the only duty. Such may not generally be the reflections of men of science, but I believe that we may thus describe the secret feelings of fear which the constant advance of scientific investigation excites in the minds of many. Is science, then, essentially atheistic and materialistic in its tendency? Does the uniform action of material causes, which we learn with an ever-increasing approximation to certainty, preclude the hypothesis of a benevolent Creator, who has not only designed the existing universe, but who still retains the power to alter its course from time to time?

To enter upon actual theological discussions would be evidently beyond the scope of this work. It is with the scientific method common to all the sciences, and not with any of the separate sciences, that we are concerned. Theology therefore would be at least as much beyond my scope as chemistry or geology. But I believe that grave misapprehensions exist as regards the very nature of scientific method. There are scientific men who assert that the interposition of Providence is impossible, and prayer an absurdity, because the laws of nature are inductively proved to be invariable. Inferences are drawn not so much from particular sciences as from the logical nature of science itself, to negative the impulses and

hopes of men. Now I may state that my own studies in logic lead me to call in question such negative inferences. Laws of nature are uniformities observed to exist in the action of certain material agents, but it is logically impossible to show that all other agents must behave as these do. The too exclusive study of particular branches of physical science seems to generate an over-confident and dogmatic spirit. Rejoicing in the success with which a few groups of facts are brought beneath the apparent sway of laws, the investigator hastily assumes that he is close upon the ultimate springs of being. A particle of gelatinous matter is found to obey the ordinary laws of chemistry; yet it moves and lives. The world is therefore asked to believe that chemistry can resolve the mysteries of existence.

The Meaning of Natural Law.

Pindar speaks of Law as the Ruler of the Mortals and the Immortals, and it seems to be commonly supposed that the so-called Laws of Nature, in like manner, rule man and his Creator. The course of nature is regarded as being determined by invariable principles of mechanics which have acted since the world began, and will act for evermore. Even if the origin of all things is attributed to an intelligent creative mind, that Being is regarded as having yielded up arbitrary power, and as being subject like a human legislator to the laws which he has himself enacted. Such notions I should describe as superficial and erroneous, being derived, as I think, from false views of the nature of scientific inference, and the degree of certainty of the knowledge which we acquire by inductive investigation.

A law of nature, as I regard the meaning of the expression, is not a uniformity which must be obeyed by all objects, but merely a uniformity which is as a matter of fact obeyed by those objects which have come beneath. our observation. There is nothing whatever incompatible with logic in the discovery of objects which should prove exceptions to any law of nature. Perhaps the best established law is that which asserts an invariable correlation to exist between gravity and inertia, so that all gravitating bodies are found to possess inertia, and all

bodies possessing inertia are found to gravitate. But it would be no reproach to our scientific method, if something were ultimately discovered to possess gravity without inertia. Strictly defined and correctly interpreted, the law itself would acknowledge the possibility; for with the statement of every law we ought properly to join an estimate of the number of instances in which it has been observed to hold true, and the probability thence calculated, that it will hold true in the next case. Now, as we found (p. 259), no finite number of instances can warrant us in expecting with certainty that the next instance will be of like nature; in the formulas yielded by the inverse method of probabilities a unit always appears to represent the probability that our inference will be mistaken. demur to the assumption that there is any necessary truth even in such fundamental laws of nature as the Indestructibility of Matter, the Conservation of Energy, or the Laws of Motion. Certain it is that men of science have recognised the conceivability of other laws, and even investigated their mathematical consequences. Airy investigated the mathematical conditions of a perpetual motion (p. 223), and Laplace and Newton discussed imaginary laws of forces inconsistent with those observed to operate in the universe (pp. 642, 706).

I

The laws of nature, as I venture to regard them, are simply general propositions concerning the correlation of properties which have been observed to hold true of bodies hitherto observed. On the assumption that our experience is of adequate extent, and that no arbitrary interference takes place, we are then able to assign the probability, always less than certainty, that the next object of the same apparent nature will conform to the same laws.

Infiniteness of the Universe.

We may safely accept as a satisfactory scientific hypothesis the doctrine so grandly put forth by Laplace, who asserted that a perfect knowledge of the universe, as it existed at any given moment, would give a perfect knowledge of what was to happen thenceforth and for ever after. Scientific inference is impossible, unless we may

regard the present as the outcome of what is past, and the cause of what is to come. To the view of perfect intelligence nothing is uncertain. The astronoiner can calculate the positions of the heavenly bodies when thousands of generations of men shall have passed away, and in this fact we have some illustration, as Laplace remarks, of the power which scientific prescience may attain. Doubtless, too, all efforts in the investigation of nature tend to bring us nearer to the possession of that ideally perfect power of intelligence. Nevertheless, as Laplace with profound wisdom adds,1 we must ever remain at an infinite distance from the goal of our aspirations.

Let us assume, for a time at least, as a highly probable hypothesis, that whatever is to happen must be the outcome of what is; there then arises the question, What is? Now our knowledge of what exists must ever remain imperfect and fallible in two respects. Firstly, we do not know all the matter that has been created, nor the exact manner in which it has been distributed through space. Secondly, assuming that we had that knowledge, we should still be wanting in a perfect knowledge of the way in which the particles of matter will act upon each other. The power of scientific prediction extends at the most to the limits of the data employed. Every conclusion is purely hypothetical and conditional upon the non-interference of agencies previously undetected. The law of gravity asserts that every body tends to approach towards every other body, with a certain determinate force; but, even supposing the law to hold true, it does not assert that the body will approach. No single law of nature can warrant us in making an absolute prediction. We must know all the laws of nature and all the existing agents acting according to those laws before we can say what will happen. To assume, then, that scientific method can take everything within its cold embrace of uniformity, is to imply that the Creator cannot outstrip the intelligence of his creatures, and that the existing Universe is not infinite in extent and complexity, an assumption for which I see no logical basis whatever.

1Théorie Analytique des Probabilités, quoted by Babbage, Ninth Bridgewater Treatise, p. 173.

« AnteriorContinuar »