Imágenes de páginas
PDF
EPUB

far have better claims to attention. Of course we must never estimate the probability of an hypothesis merely by its accordance with a few results only. Its general analogy and accordance with other known laws of nature, and the fact that it does not conflict with other probable theories, must be taken into account, as we shall see in the next book. The requisite condition of a good hypothesis, that it must admit of the deduction of facts verified in observation, must be interpreted in the widest manner, as including all ways in which there may be accordance or discordance. All our attempts at reconciliation having failed, the only conclusion we can come to is that some unknown cause of a new character exists. If the measurements be accurate and the theory probable, then there remains a residual phenomenon, which, being devoid of theoretical explanation, must be set down as a new empirical fact worthy of further investigation. Outstanding residual discrepancies have often been found to involve new discoveries of the greatest importance.

Accordance of Measurements of Astronomical Distances.

One of the most instructive instances which we can meet, of the manner in which different measurements confirm or check each other, is furnished by the determination of the velocity of light, and the dimensions of the planetary system. Roemer first discovered that light requires time to travel, by observing that the eclipses of Jupiter's satellites, although they occur at fixed moments of absolute time, are visible at different moments in different parts of the earth's orbit, according to the distance between the earth and Jupiter. The time occupied by light in traversing the mean semi-diameter of the earth's orbit is found to be about eight minutes. The mean distance of the sun and earth was long assumed by astronomers as being about 95,274,000 miles, this result being deduced by Bessel from the observations of the transit of Venus, which occurred in 1769, and which were found to give the solar parallax, or which is the same thing, the apparent angular magnitude of the earth seen from the sun, as equal to 8"-578. Dividing the mean distance of the sun and earth by the

number of seconds in 8m. 13.3 we find the velocity of light to be about 192,000 miles per second.

Nearly the same result was obtained in what seems a different manner. The aberration of light is the apparent change in the direction of a ray of light owing to the composition of its motion with that of the earth's motion round the sun. If we know the amount of aberration and the mean velocity of the earth, we can estimate that of light, which is thus found to be 191,100 miles per second. Now this determination depends upon a new physical quantity, that of aberration, which is ascertained by direct observation of the stars, so that the close accordance of the estimates of the velocity of light as thus arrived at by different methods might seem to leave little room for doubt, the difference being less than one per cent.

Nevertheless, experimentalists were not satisfied until they had succeeded in measuring the velocity of light by direct experiments performed upon the earth's surface. Fizeau, by a rapidly revolving toothed wheel, estimated the velocity at 195,920 miles per second. As this result differed by about one part in sixty from estimates previously accepted, there was thought to be room for further investigation. The revolving mirror, used by Wheatstone in measuring the velocity of electricity, was now applied in a more refined manner by Fizeau and by Foucault to determine the velocity of light. The latter physicist came to the startling conclusion that the velocity was not really more than 185,172 miles per second. No repetition of the experiment would shake this result, and there was accordingly a discrepancy between the astronomical and the experimental results of about 7,000 miles per second. The latest experiments, those of M. Cornu, only slightly raise the estimate, giving 186, 660 miles per second. A little consideration shows that both the astronomical determinations involve the magnitude of the earth's orbit as one datum, because our estimate of the earth's velocity in its orbit depends upon our estimate of the sun's mean distance. Accordingly as regards this quantity the two astronomical results count only for one. Though the transit of Venus had been considered to give the best data for the calculation of the sun's parallax, yet astronomers had not neglected less favourable opportunities. Hansen, calculating from

certain inequalities in the moon's motion, had estimated it at 8"-916; Winneke, from observations of Mars, at 8" 964; Leverrier, from the motions of Mars, Venus, and the moon, at 8"-950. These independent results agree much better with each other than with that of Bessel (8578) previously received, or that of Encke (858) deduced from the transits of Venus in 1761 and 1769, and though each separately might be worthy of less credit, yet their close accordance renders their mean result (8′′943) comparable in probability with that of Bessel. It was further found that if Foucault's value for the velocity of light were assumed to be correct, and the sun's distance were inversely calculated from that, the sun's parallax would be 8960, which closely agreed with the above mean result. This further correspondence of independent results threw the balance of probability strongly against the results of the transit of Venus, and rendered it desirable to reconsider the observations made on that occasion. Mr. E. J. Stone, having re-discussed those observations,1 found that grave oversights had been made in the calculations, which being corrected would alter the estimate of parallax to 891, a quantity in such comparatively close accordance with the other results that astronomers did not hesitate at once to reduce their estimate of the sun's mean distance from 95,274,000 to 91,771,000, miles, although this alteration involved a corresponding correction in the assumed magnitudes and distances of most of the heavenly bodies. The solar parallax is now (1875) believed to be about 8" 878, the number deduced from Cornu's experiments on the velocity of light. This result agrees very closely with 8"-879, the estimate obtained from new observations on the transit of Venus, by the French observers, and with 8873, the result of Galle's observations of the planet Flora. When all the observations of the late transit of Venus are fully discussed the sun's distance will probably be known to less than one part in a thousand, if not one part in ten thousand.2

1 Monthly Notices of the Royal Astronomical Society, vol. xxviii. P. 264.

It would seem to be absurd to repeat the profuse expenditure of 1874 at the approaching transit in 1882. The aggregate sum spent in 1874 by various governments and individuals can hardly be less than

In this question the theoretical relations between the velocity of light, the constant of aberration, the sun's parallax, and the sun's mean distance, are of the simplest character, and can hardly be open to any doubt, so that the only doubt was as to which result of observation was the most reliable. Eventually the chief discrepancy was found to arise from misapprehension in the reduction of observations, but we have a satisfactory example of the value of different methods of estimation in leading to the detection of a serious error. Is it not surprising that Foucault by measuring the velocity of light when passing through the space of a few yards, should lead the way to a change in our estimates of the magnitudes of the whole universe?

Selection of the best Mode of Measurement.

When we once obtain command over a question of physical science by comprehending the theory of the subject, we often have a wide choice opened to us as regards the methods of measurement, which may thenceforth be made to give the most accurate results. If we can measure one fundamental quantity very precisely we may be able by theory to determine accurately many other quantitative results. Thus, if we determine satisfactorily the atomic weights of certain elements, we do not need to determine with equal accuracy the composition and atomic weights of their several compounds. Having learnt the relative atomic weights of oxygen and sulphur, we can calculate the composition by weight of the several oxides of sulphur. Chemists accordingly select with the greatest care that compound of two elements which seems to allow of the most accurate analysis, so as to give the ratio of their atomic weights. It is obvious that we only need the ratio of the atomic weight of each element to that of some common element, in order to calculate that of each to each. Moreover the atomic weight stands in simple relation to other quantitative facts. The weights of equal volumes of elementary gases at equal temperature and pressure have

£200,000, a sum which, wisely expended on scientific investigations, would give a hundred important results.

the same ratios as the atomic weights; now, as nitrogen under such circumstances weighs 1406 times as much as hydrogen, we may infer that the atomic weight of nitrogen is about 14:06, or more probably 1400, that of hydrogen being unity. There is much evidence, again, that the specific heats of elements are inversely as their atomic weights, so that these two classes of quantitative data throw light mutually upon each other. In fact the atomic weight, the atomic volume, and the atomic heat of an element, are quantities so closely connected that the determination of one will lead to that of the others. The chemist has to solve a complicated problem in deciding in the case of each of 60 or 70 elements which mode of determination is most accurate. Modern chemistry presents us with an almost infinitely extensive web of numerical ratios developed out of a few fundamental ratios.

In hygrometry we have a choice among at least four modes of measuring the quantity of aqueous vapour contained in a given bulk of air. We can extract the vapour by absorption in sulphuric acid, and directly weigh its amount; we can place the air in a barometer tube and observe how much the absorption of the vapour alters the elastic force of the air; we can observe the dew-point of the air, that is the temperature at which the vapour becomes saturated; or, lastly, we can insert a dry and wet bulb thermometer and observe the temperature of an evaporating surface. The results of each mode can be connected by theory with those of the other modes, and we can select for each experiment that mode which is most accurate or most convenient. The chemical method of direct measurement is capable of the greatest accuracy, but is troublesome; the dry and wet bulb thermometer is sufficiently exact for meteorological purposes and is most easy to use.

Agreement of Distinct Modes of Measurement.

Many illustrations might be given of the accordance which has been found to exist in some cases between the results of entirely different methods of arriving at the measurement of a physical quantity. While such accordance must, in the absence of information to the contrary,

« AnteriorContinuar »