Imágenes de páginas
PDF
EPUB

In a second class of cases, the event A may make our perception of B follow, which would otherwise happen without being perceived. Thus it was believed to be the result of investigation that more comets appeared in hot than cold summers. No account was taken of the fact that hot summers would be comparatively cloudless, and afford better opportunities for the discovery of comets. Here the disturbing condition is of a purely external character. Certain ancient philosophers held that the moon's rays were cold-producing, mistaking the cold caused by radiation into space for an effect of the moon, which is more likely to be visible at a time when the absence of clouds permits radiation to proceed.

In a third class of cases, our perception of A may make our perception of B follow. The event B may be constantly happening, but our attention may not be drawn to it except by our observing A. This case seems to be illustrated by the fallacy of the moon's influence on clouds. The origin of this fallacy is somewhat complicated. In the first place, when the sky is densely clouded the moon would not be visible at all; it would be necessary for us to see the full moon in order that our attention should be strongly drawn to the fact, and this would happen most often on those nights when the sky is cloudless. Mr. W. Ellis,1 moreover, has ingeniously pointed out that there is a general tendency for clouds to disperse at the commencement of night, which is the time when the full moon rises. Thus the change of the sky and the rise of the full moon are likely to attract attention mutually, and the coincidence in time suggests the relation of cause and effect. Mr. Ellis proves from the results of observations at the Greenwich Observatory that the moon possesses no appreciable power of the kind supposed, and yet it is remarkable that so sound an observer as Sir John Herschel was convinced of the connection. In his "Results of Observations at the Cape of Good Hope," he mentions many evenings when a full moon occurred with a peculiarly clear sky.

1 Philosophical Magazine, 4th Series (1867), vol. xxxiv. p. 64. 2 See Notes to Measures of Double Stars, 1204, 1336, 1477, 1686. 1786, 1816, 1835, 1929, 2081, 2186, pp. 265, &c. See also Herschel Familiar Lectures on Scientific Subjects, p 147, and Outlines of Astronomy, 7th ed. p. 285.

There is yet a fourth class of cases, in which B is really the antecedent event, but our perception of A, which is a consequence of B, may be necessary to bring about our perception of B. There can be no doubt, for instance, that upward and downward currents are continually circulating in the lowest stratum of the atmosphere during the day-time; but owing to the transparency of the atmosphere we have no evidence of their existence until we perceive cumulous clouds, which are the consequence of such currents. In like manner an interfiltration of bodies of air in the higher parts of the atmosphere is probably in nearly constant progress, but unless threads of cirrous cloud indicate these motions we remain ignorant of their occurrence.1 The highest strata of the atmosphere are wholly imperceptible to us, except when rendered luminous by auroral currents of electricity, or by the passage of meteoric stones. Most of the visible phenomena of comets probably arise from some substance which, existing previously invisible, becomes condensed or electrified suddenly into a visible form. Sir John Herschel attempted to explain the production of comet tails in this manner by evaporation and condensation.2

Negative Arguments from Non-observation.

From what has been suggested in preceding sections, it will plainly appear that the non-observation of a phenomenon is not generally to be taken as proving its nonoccurrence. As there are sounds which we cannot hear, rays of heat which we cannot feel, multitudes of worlds which we cannot see, and myriads of minute organisms of which not the most powerful microscope can give us a view, we must as a general rule interpret our experience in an affirmative sense only. Accordingly when inferences have been drawn from the non-occurrence of particular facts or objects, more extended and careful examination has often proved their falsity. Not many years since it was quite a well credited conclusion in geology that no remains of man were found in connection with those of

1 Jevons, On the Cirrous Form of Cloud, Philosophical Magazine, July, 1857, 4th Series, vol. xiv. p. 22.

2 Astronomy, 4th ed. p. 358

extinct animals, or in any deposit not actually at present in course of formation. Even Babbage accepted this conclusion as strongly confirmatory of the Mosaic accounts.' While the opinion was yet universally held, flint implements had been found disproving such a conclusion, and overwhelming evidence of man's long-continued existence has since been forthcoming. At the end of the last century, when Herschel had searched the heavens with his powerful telescopes, there seemed little probability that planets yet remained unseen within the orbit of Jupiter. But on the first day of this century such an opinion was overturned by the discovery of Ceres, and more than a hundred other small planets have since been added to the lists of the planetary system.

The discovery of the Eozoon Canadense in strata of much greater age than any previously known to contain organic remains, has given a shock to groundless opinions concerning the origin of organic forms; and the oceanic dredging expeditions under Dr. Carpenter and Sir Wyville Thomson have modified some opinions of geologists by disclosing the continued existence of forms long supposed to be extinct. These and many other cases which might be quoted show the extremely unsafe character of negative inductions.

But it must not be supposed that negative arguments are of no force and value. The earth's surface has been sufficiently searched to render it highly improbable that any terrestrial animals of the size of a camel remain to be discovered. It is believed that no new large animal has been encountered in the last eighteen or twenty centuries,* and the probability that if existent they would have been seen, increases the probability that they do not exist. We may with somewhat less confidence discredit the existence of any large unrecognised fish, or sea animals, such as the alleged sea-serpent. But, as we descend to forms of smaller size negative evidence loses weight from the less probability of our seeing smaller objects. Even the strong induction in favour of the four-fold division of the animal kingdom into Vertebrata, Annulosa, Mollusca,

'Babbage, Ninth Bridgewater Treatise, p. 67.

Cuvier, Essay on the Theory of the Earth, translation, p. 61, &c.

and Cœlenterata, may break down by the discovery of intermediate or anomalous forms. As civilisation spreads over the surface of the earth, and unexplored tracts are gradually diminished, negative conclusions will increase in force; but we have much to learn yet concerning the depths of the ocean, almost wholly unexamined as they are, and covering three-fourths of the earth's surface.

In

In geology there are many statements to which considerable probability attaches on account of the large extent of the investigations already made, as, for instance, that true coal is found only in rocks of a particular geological epoch; that gold occurs in secondary and tertiary strata only in exceedingly small quantities, probably derived from the disintegration of earlier rocks. natural history negative conclusions are exceedingly treacherous and unsatisfactory. The utmost patience will not enable a microscopist or the observer of any living thing to watch the behaviour of the organism under all circumstances continuously for a great length of time. There is always a chance therefore that the critical act or change may take place when the observer's eyes are withdrawn. This certainly happens in some cases; for though the fertilisation of orchids by agency of insects is proved as well as any fact in natural history, Mr. Darwin has never been able by the closest watching to detect an insect in the performance of the operation. Mr. Darwin has himself adopted one conclusion on negative evidence, namely, that the Orchis pyramidalis and certain other orchidaceous flowers secrete no nectar. But his caution and unwearying patience in verifying the conclusion give an impressive lesson to the observer. For twenty-three consecutive days, as he tells us, he examined flowers in all states of the weather, at all hours, in various localities. As the secretion in other flowers sometimes takes place rapidly and might happen at early dawn, that inconvenient hour of observation was specially adopted. Flowers of different ages were subjected to irritating vapours, to moisture, and to every condition likely to bring on the secretion; and only after invariable failure of this exhaustive inquiry was the barrenness of the nectaries assumed to be proved.2 1 Murchison's Siluria, 1st ed. p. 432. 2 Darwin's Fertilisation of Orchids, p. 48.

In order that a negative argument founded on the nonobservation of an object shall have any considerable force, it must be shown to be probable that the object if existent would have been observed, and it is this probability which defines the value of the negative conclusion. The failure of astronomers to see the planet Vulcan, supposed by some to exist within Mercury's orbit, is no sufficient disproof of its existence. Similarly it would be very difficult, or even impossible, to disprove the existence of a second satellite of small size revolving round the earth. But if any person make a particular assertion, assigning place and time, then observation will either prove or disprove the alleged fact. If it is true that when a French observer professed to have seen a planet on the sun's face, an observer in Brazil was carefully scrutinising the sun and failed to see it, we have a negative proof. False facts in science, it has been well said, are more mischievous than false theories. A false theory is open to every person's criticism, and is ever liable to be judged by its accordance with facts. But a false or grossly erroneous assertion of a fact often stands in the way of science for a long time, because it may be extremely difficult or even impossible to prove the falsity of what has been once recorded.

In other sciences the force of a negative argument will often depend upon the number of possible alternatives which may exist. It was long believed that the quality of a musical sound as distinguished from its pitch, must depend upon the form of the undulation, because no other cause of it had ever been suggested or was apparently possible. The truth of the conclusion was proved by Helmholtz, who applied a microscope to luminous points attached to the strings of various instruments, and thus actually observed the different modes of undulation. In mathematics negative inductive arguments have seldom much force, because the possible forms of expression, or the possible combinations of lines and circles in geometry, are quite unlimited in number. An enormous number of attempts were made to trisect the angle by the ordinary methods of Euclid's geometry, but their invariable failure did not establish the impossibility of the task. This was shown in a totally different manner, by proving that the problem involves an irreducible cubic

« AnteriorContinuar »