Imágenes de páginas
PDF
EPUB

found preferable to take a shorter interval, rather than incur the risk of greater instrumental errors in the earlier observations.

It is obvious that many of the slower changes of the heavenly bodies must require the lapse of large intervals of time to render their amount perceptible. Hipparchus could not possibly have discovered the smaller inequalities of the heavenly motions, because there were no previous observations of sufficient age or exactness to exhibit them. And just as the observations of Hipparchus formed the starting-point for subsequent comparisons, so a large part of the labour of present astronomers is directed to recording the present state of the heavens so exactly, that future generations of astronomers may detect changes, which cannot possibly become known in the present age.

The principle of repetition was very ingeniously employed in an instrument first proposed by Mayer in 1767, and carried into practice in the Repeating Circle of Borda. The exact measurement of angles is indispensable, not only in astronomy but also in trigonometrical surveys, and the highest skill in the mechanical execution of the graduated circle and telescope will not prevent terminal errors of considerable amount. If instead of one telescope, the circle be provided with two similar telescopes, these may be alternately directed to two distant points, say the marks in a trigonometrical survey, so that the circle shall be turned through any multiple of the angle subtended by those marks, before the amount of the angular revolution is read off upon the graduated circle. Theoretically speaking, all error arising from imperfect graduation might thus be indefinitely reduced, being divided by the number of repetitions. In practice, the advantage of the invention is not found to be very great, probably because a certain. error is introduced at each observation in the changing and fixing of the telescopes. It is moreover inapplicable to moving objects like the heavenly bodies, so that its use is confined to important trigonometrical surveys.

The pendulum is the most perfect of all instruments, chiefly because it admits of almost endless repetition. Since the force of gravity never ceases, one swing of the pendulum is no sooner ended than the other is begun, so that the juxtaposition of successive units is absolutely

perfect. Provided that the oscillations be equal, one thousand oscillations will occupy exactly one thousand times as great an interval of time as one oscillation. Not only is the subdivision of time entirely dependent on this fact, but in the accurate measurement of gravity, and many other important determinations, it is of the greatest service. In the deepest mine, we could not observe the rapidity of fall of a body for more than a quarter of a minute, and the measurement of its velocity would be difficult, and subject to uncertain errors from resistance of air, &c. In the pendulum, we have a body which can be kept rising and falling for many hours, in a medium entirely under our command or if desirable in a vacuum. Moreover, the comparative force of gravity at different points, at the top and bottom of a mine for instance, can be determined with wonderful precision, by comparing the oscillations of two exactly similar pendulums, with the aid of electric clock signals.

To ascertain the comparative times of vibration of two pendulums, it is only requisite to swing them one in front of the other, to record by a clock the moment when they coincide in swing, so that one hides the other, and then count the number of vibrations until they again come to coincidence. If one pendulum makes m vibrations and the other n, we at once have our equation pn = qm; which gives the length of vibration of either pendulum in terms of the other. This method of coincidence, embodying the principle of repetition in perfection, was employed with wonderful skill by Sir George Airy, in his experiments on the Density of the Earth at the Harton Colliery, the pendulums above and below being compared with clocks, which again were compared with each other by electric signals. So exceedingly accurate was this method of observation, as carried out by Sir George Airy, that he was able to measure a total difference in the vibrations at the top and bottom of the shaft, amounting to only 2:24 seconds in the twenty-four hours, with an error of less than one hundredth part of a second, or one part in 8,640,000 of the whole day.1

The principle of repetition has been elegantly applied

1 Philosophical Transactions, (1856) vol. 146, Part i. p. 297.

.

If the canal

in observing the motion of waves in water. in which the experiments are made be short, say twenty feet long, the waves will pass through it so rapidly that an observation of one length, as practised by Walker, will be subject to much terminal error, even when the observer is very skilful. But it is a result of the undulatory theory that a wave is unaltered, and loses no time by complete reflection, so that it may be allowed to travel backwards and forwards in the same canal, and its motion, say through sixty lengths, or 1200 feet, may be observed with the same accuracy as in a canal 1200 feet long, with the advantage of greater uniformity in the condition of the canal and water. It is always desirable, if possible, to bring an experiment into a small compass, so that it may be well under command, and yet we may often by repetition enjoy at the same time the advantage of extensive trial.

One reason of the great accuracy of weighing with a good balance is the fact, that weights placed in the same scale are naturally added together without the slightest error. There is no difficulty in the precise juxtaposition of two grams, but the juxtaposition of two metre measures can only be effected with tolerable accuracy, by the use of microscopes and many precautions. Hence, the extreme trouble and cost attaching to the exact measurement of a base line for a survey, the risk of error entering at every juxtaposition of the measuring bars, and indefatigable attention to all the requisite precautions being necessary throughout the operation.

Measurements by Natural Coincidence.

In certain cases a peculiar conjunction of circumstances enables us to dispense more or less with instrumental aids, and to obtain very exact numerical results in the simplest manner. The mere fact, for instance, that no human being has ever seen a different face of the moon from that familiar to us, conclusively proves that the period of rotation of the moon on its own axis is equal

Airy, On Tides and Waves, Encyclopædia Metropolitana, p. 345. Scott Russell, British Association Report, 1837, p. 432.

to that of its revolution round the earth. Not only have we the repetition of these movements during 1000 or 2000 years at least, but we have observations made for us at very remote periods, free from instrumental error, no instrument being needed. We learn that the seventh satellite of Saturn is subject to a similar law, because its light undergoes a variation in each revolution, owing to the existence of some dark tract of land; now this failure of light always occurs while it is in the same position relative to Saturn, clearly proving the equality of the axial and revolutional periods, as Huygens perceived.1 A like peculiarity in the motions of Jupiter's fourth satellite was similarly detected by Maraldi in 1713.

Remarkable conjunctions of the planets may sometimes allow us to compare their periods of revolution, through great intervals of time, with much accuracy. Laplace in explaining the long inequality in the motions of Jupiter and Saturn, was assisted by a conjunction of these planets, observed at Cairo, towards the close of the eleventh century. Laplace calculated that such a conjunction must have happened on the 31st of October, A.D. 1087; and the discordance between the distances of the planets as recorded, and as assigned by theory, was less than one-fifth part of the apparent diameter of the sun. This difference being less than the probable error of the early record, the theory was confirmed as far as facts. were available.2

Ancient astronomers often showed the highest ingenuity in turning any opportunities of measurement which occurred to good account. Eratosthenes, as early as 250 B.C., happening to hear that the sun at Syene, in Upper Egypt, was visible at the summer solstice at the bottom of a well, proving that it was in the zenith, proposed to determine the dimensions of the earth, by measuring the length of the shadow of a rod at Alexandria on the same day of the year. He thus learnt in a rude manner the difference of latitude between Alexandria,and Syene and finding it to be about one fiftieth part of the whole circumference, he ascertained the dimensions of the

1 Hugenii Cosmotheoros, pp. 117, 118. Laplace's Système, translated, vol. i. p. 67.

2 Grant's History of Physical Astronomy, p 129.

earth within about one sixth part of the truth. The use of wells in astronomical observation appears to have been occasionally practised in comparatively recent times as by Flamsteed in 1679.1 The Alexandrian astronomers employed the moon as an instrument of measurement in several sagacious modes. When the moon is exactly half full, the moon, sun, and earth, are at the angles of a right-angled triangle. Aristarchus measured at such a time the moon's elongation from the sun, which gave him the two other angles of the triangle, and enabled him to judge of the comparative distances of the moon and sun from the earth. His result, though very rude, was far more accurate than any notions previously entertained, and enabled him to form some estimate of the comparative magnitudes of the bodies. Eclipses of the moon were very useful to Hipparchus in ascertaining the longtitude of the stars, which are invisible when the sun is above the horizon. For the moon when eclipsed must be 180° distant from the sun; hence it is only requisite to measure the distance of a fixed star in longitude from the eclipsed moon to obtain with ease its angular distance from the

sun.

In later times the eclipses of Jupiter have served to measure an angle; for at the middle moment of the eclipse the satellite must be in the same straight line with the planet and sun, so that we can learn from the known laws of movement of the satellite the longitude of Jupiter as seen from the sun. If at the same time we measure the elongation or apparent angular distance of Jupiter from the sun, as seen from the earth, we have all the angles of the triangle between Jupiter, the sun, and the earth, and can calculate the comparative magnitudes of the sides of the triangle by trigonometry.

The transits of Venus over the sun's face are other natural events which give most accurate measurements of the sun's parallax, or apparent difference of position as seen from distant points of the earth's surface. The sun.forms a kind of background on which the place of the planet is marked, and serves as a measuring instrument free from all the errors of construction which affect

Baily's Account of Flamsteed, p. lix.

« AnteriorContinuar »