Imágenes de páginas
PDF
EPUB

BOOK III.

METHODS OF MEASUREMENT.

CHAPTER XIII.

THE EXACT MEASUREMENT OF PHENOMENA.

As physical science advances, it becomes more and more accurately quantitative. Questions of simple logical fact after a time resolve themselves into questions of degree, time, distance, or weight. Forces hardly suspected to exist by one generation, are clearly recognised by the next, and precisely measured by the third generation. But one condition of this rapid advance is the invention of suitable instruments of measurement. We need what Francis Bacon called Instantia citantes, or evocantes, methods of rendering minute phenomena perceptible to the senses; and we also require Instantia radii or curriculi, that is measuring instruments. Accordingly, the introduction of a new instrument often forms an epoch in the history of science. As Davy said, "Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession." In the absence indeed of advanced theory and analyti

cal power, a very precise instrument would be useless. Measuring apparatus and mathematical theory should advance pari passu, and with just such precision as the theorist can anticipate results, the experimentalist should be able. to compare them with experience. The scrupulously accurate observations of Flamsteed were the proper complement to the intense mathematical powers of Newton.

Every branch of knowledge commences with quantitative notions of a very rude character. After we have far progressed, it is often amusing to look back into the infancy of the science, and contrast present with past methods. At Greenwich Observatory in the present day, the hundredth part of a second is not thought an inconsiderable portion of time. The ancient Chaldeans recorded an eclipse to the nearest hour, and the early Alexandrian astronomers, thought it superfluous to distinguish between the edge and centre of the sun. By the introduction of the astrolabe, Ptolemy and the later Alexandrian astronomers could determine the places of the heavenly bodies within about ten minutes of arc. Little progress then ensued for thirteen centuries, until Tycho Brahe made the first great step towards accuracy, not only by employing better instruments, but even more by ceasing to regard an instrument as correct. Tycho, in fact, determined the errors of his instruments, and corrected his observations. He also took notice of the effects of atmospheric refraction, and succeeded in attaining an accuracy often sixty times as great as that of Ptolemy. Yet Tycho and Hevelius often erred several minutes in the determination of a star's place, and it was a great achievement of Roemer and Flamsteed to reduce this error to seconds. Bradley, the modern Hipparchus, carried on the improvement, his errors in right ascension, according to Bessel, being under one second of time, and those of declination under four seconds of arc. In the present day the average error of a single observation is probably reduced to the half or quarter of what it was in Bradley's time; and further extreme accuracy is attained by the multiplication of observations, and their skilful combination according to the theory of error. Some of the more important constants, for instance that

of nutation, have been determined within the tenth part of a second of space.1

It would be a matter of great interest to trace out the dependence of this progress upon the introduction of new instruments. The astrolabe of Ptolemy, the telescope of Galileo, the pendulum of Galileo and Huyghens, the micrometer of Horrocks, and the telescopic sights and micrometer of Gascoygne and Picard, Roemer's transit instrument, Newton's and Hadley's quadrant, Dollond's achromatic lenses, Harrison's chronometer, and Ramsden's dividing engine-such were some of the principal additions to astronomical apparatus. The result is, that we now take note of quantities, 300,000 or 400,000 times as small as in the time of the Chaldæans.

It would be interesting again to compare the scrupulous accuracy of a modern trigonometrical survey with Eratosthenes' rude but ingenious guess at the difference of latitude between Alexandria and Syene-or with Norwood's measurement of a degree of latitude in 1635. "Sometimes I measured, sometimes I paced," said Norwood; " and I believe I am within a scantling of the truth." Such was the germ of those elaborate geodesical measurements which have made the dimensions of the globe known to us within a few hundred yards.

In other branches of science, the invention of an instrument has usually marked, if it has not made, an epoch. The science of heat might be said to commence with the construction of the thermometer, and it has recently been advanced by the introduction of the thermo-electric pile. Chemistry has been created chiefly by the careful use of the balance, which forms a unique instance of an instrument remaining substantially in the form in which it was first applied to scientific purposes by Archimedes. The balance never has been and probably never can be improved, except in details of construction. The torsion balance, introduced by Coulomb towards the end of last century, has rapidly become essential in many branches of investigation. In the hands of Cavendish and Baily, it gave a determination of the earth's density; applied in the galvanometer, it gave a delicate measure of electrical

Baily, British Association Catalogue of Stars, pp. 7, 23.

forces, and is indispensable in the thermo-electric pile. This balance is made by simply suspending any light rod by a thin wire or thread attached to the middle point. And we owe to it almost all the more delicate investigations in the theories of heat, electricity, and magnetism.

Though we can now take note of the millionth of an inch in space, and the millionth of a second in time, we must not overlook the fact that in other operations of science we are yet in the position of the Chaldæans. Not many years have elapsed since the magnitudes of the stars, meaning the amounts of light they send to the observer's eye, were guessed at in the rudest manner, and the astronomer adjudged a star to this or that order of magnitude by a rough comparison with other stars of the same order. To Sir John Herschel we owe an attempt to introduce a uniform method of measurement and expression, bearing some relation to the real photometric magnitudes of the stars.1 Previous to the researches of Bunsen and Roscoe on the chemical action of light, we were devoid of any mode of measuring the energy of light; even now the methods are tedious, and it is not clear that they give the energy of light so much as one of its special effects. Many natural phenomena have hardly yet been made the subject of measurement at all, such as the intensity of sound, the phenomena of taste and smell, the magnitude of atoms, the temperature of the electric spark or of the sun's photosphere.

To suppose, then, that quantitative science treats only of exactly measurable quantities, is a gross if it be a common mistake. Whenever we are treating of an event which either happens altogether or does not happen at all, we are engaged with a non-quantitative phenomenon, a matter of fact, not of degree; but whenever a thing may be greater or less, or twice or thrice as great as another, whenever, in short, ratio enters even in the rudest manner, there science will have a quantitative character. There can be little doubt, indeed, that every science as it progresses will become gradually more and more quantitative. Numerical precision is the soul of science, as

Outlines of Astronomy, 4th ed. sect. 781, p. 522. Observations at the Cape of Good Hope, &c., p. 37:

Results of

T

Herschel said, and as all natural objects exist in space, and involve molecular movements, measurable in velocity and extent, there is no apparent limit to the ultimate extension of quantitative science. But the reader must not for a moment suppose that, because we depend more and more upon mathematical methods, we leave logical methods behind us. Number, as I have endeavoured to show, is logical in its origin, and quantity is but a development of number, or analogous thereto.

Division of the Subject.

The general subject of quantitative investigation will have to be divided into several parts. We shall firstly consider the means at our disposal for measuring phenomena, and thus rendering them more or less amenable to mathematical treatment. This task will involve an analysis of the principles on which accurate methods of measurement are founded, forming the subject of the remainder of the present chapter. As measurement, however, only yields ratios, we have in the next chapter to consider the establishment of unit magnitudes, in terms of which our results may be expressed. As every phenomenon is usually the sum of several distinct quantities depending upon different causes, we have next to investigate in Chapter XV. the methods by which we may disentangle complicated effects, and refer each part of the joint effect to its separate cause.

It yet remains for us in subsequent chapters to treat of quantitative induction, properly so called. We must follow out the inverse logical method, as it presents itself in problems of a far higher degree of difficulty than those which treat of objects related in a simple logical manner, and incapable of merging into each other by addition and subtraction.

Continuous Quantity.

The phenomena of nature are for the most part manifested in quantities which increase or decrease continuously. When we inquire into the precise meaning of continuous quantity, we find that it can only be described

« AnteriorContinuar »