Imágenes de páginas
PDF
EPUB

B accepts of the energy from A, the molecule A instantly assumes the crystalline form. B is now melted; and when C accepts of the energy from B, then B also in turn assumes the solid state. This process goes on from molecule to molecule till the energy is transmitted through to the opposite side and the ice is left in its original solid state. This, as will be shown in the Appendix, is the rationale of Faraday's property of regelation.

This is no mere theory or hypothesis; it is a necessary consequence from known facts. We know that ice at 32° cannot take on energy from a heated body without melting; and we know also equally well that a slab of ice at 32°, notwithstanding this, still, as a mass, retains its solid state while the heat is being transmitted through it. This proves that every molecule resumes its crystalline form the moment after the energy is transferred to the adjoining molecule.

This point being established, every difficulty regarding the descent of the glacier entirely disappears; for a molecule the moment that it assumes the fluid state is completely freed from shearing-force, and can descend by virtue of its own weight without any impediment. All that the molecule requires is simply room or space to advance in. If the molecule were in absolute contact with the adjoining molecule below, it would not descend unless it could push that molecule before it, which it probably would not be able to do. But the molecule actually has room in which to advance; for in passing from the solid to the liquid state its volume is diminished by about 1%, and it consequently can descend. True, when it again assumes the solid form it will regain its former volume; but the question is, will it go back to its old position? If we examine the matter thoroughly we shall find that it cannot. If there were only this one molecule affected by the heat, this molecule would certainly not descend; but all the molecules are similarly affected, although not all at the same moment of time.

Let us observe what takes place, say, at the lower end of the glacier. The molecule A at the lower end, say, of the surface, receives heat from the sun's rays; it melts, and in melting not

only loses its shearing-force and descends by its own weight, but it contracts also. B immediately above it is now, so far as A is concerned, at liberty to descend, and will do so the moment that it assumes the liquid state. A by this time has become solid, and again fixed by shearing-force; but it is not fixed in its old position, but a little below where it was before. If B has not already passed into the fluid state in consequence of heat derived from the sun, the additional supply which it will receive from the solidifying of A will melt it. The moment that B becomes fluid it will descend till it reaches A. B then is solidified a little below its former position. The same process of reasoning is in a similar manner applicable to every molecule of the glacier. Each molecule of the glacier consequently descends step by step as it melts and solidifies, and hence the glacier, considered as a mass, is in a state of constant motion downwards. The fact observed by Professor Tyndall that there are certain planes in the ice along which melting takes place more readily than others will perhaps favour the descent of the glacier.

We have in this theory a satisfactory explanation of the origin of "crevasses" in glaciers. Take, for example, the transverse crevasses formed at the point where an increase in the inclination of the glacier takes place. Suppose a change of inclination from, say, 4° to 8° in the bed of the glacier. The molecules on the slope of 8° will descend more rapidly than those above on the slope of 4°. A state of tension will therefore be induced at the point where the change of inclination occurs. The ice on the slope of 8° will tend to pull after it the mass of the glacier moving more slowly on the slope above. The pull being continued, the glacier will snap asunder the moment that the cohesion of the ice is overcome. The greater the change of inclination is, the more readily will the rupture of the ice take place. Every species of crevasse can be explained upon the same principle.

There is one circumstance tending slightly to prevent the rupture of the glacier, when under tension, which I do not remember to have seen noticed;

This theory explains also why a glacier moves at a greater rate during summer than during winter; for as the supply of heat to the glacier is greater during the former season than during the latter, the molecules will pass oftener into the liquid

state.

As regards the denuding power of glaciers, I may observe that, though a glacier descends molecule by molecule, it will grind the rocky bed over which it moves as effectually as it would do did it slide down in a rigid mass in the way generally supposed; for the grinding-effect is produced not by the ice of the glacier, but by the stones, sand, and other materials forced along under it. But if all the resistances opposing the descent of a glacier, internal and external, are overcome by the mere weight of the ice aloue, it can be proved that in the case of one descending with a given velocity the amount of work performed in forcing the grinding materials lying under the ice forward must be as great, supposing the motion of the ice to be molecular in the way I have explained, as it would be supposing the ice descended in the manner generally supposed.

Of course, a glacier could not descend by means of its weight as rapidly in the latter case as in the former; for, in fact, as Canon Moseley has shown, it would not in the latter case descend at all; but assuming for the sake of argument the rate of descent in both cases to be the same, the conclusion I have stated would follow. Consequently whatever denuding effects may have been attributed to the glacier, according to the ordinary theory, must be equally attributable to it according to the present explanation.

This theory, however, explains, what has always hitherto excited astonishment, viz., why a glacier can descend a slope almost horizontal, or why the ice can move off the face of a continent perfectly level.

that is, the cooling effect which is produced in solids, such as ice, when subjected to tension. Tension would tend to lower the temperature of the ice-molecules, and this lowering of temperature would have the tendency of freezing them more firmly together. The cause of this cooling effect will be explained in the Appendix.

This is the form in which my explanation was first stated about half-a-dozen years ago.* There is, however, another

element which must be taken into account. It is one which will help to cast additional light on some obscure points connected with glacial phenomena.

Ice is evidently not absolutely solid throughout. It is composed of crystalline particles, which, though in contact with one another, are, however, not packed together so as to occupy the least possible space, and, even though they were, the particles would not fit so closely together as to exclude interstices. The crystalline particles are, however, united to one another at special points determined by their polarity, and on this account they require more space; and this in all probability is the reason, as Professor Tyndall remarks, why ice, volume for volume, is less dense than water.

"They (the molecules) like the magnets," says Professor Tyndall, "are acted upon by two distinct forces; for a time, while the liquid is being cooled, they approach each other, in obedience to their general attraction for each other. But at a certain point new forces, some attractive some repulsive, emanating from special points of the molecules, come into play. The attracted points close up, the repelled points retreat. Thus the molecules turn and rearrange themselves, demanding as they do so more space, and overcoming all ordinary resistance by the energy of their demand. This, in general terms, is an explanation of the expansion of water in solidifying." †

It will be obvious, then, that when a crystalline molecule melts, it will not merely descend in the manner already described, but capillary attraction will cause it to flow into the interstices between the adjoining molecules. The moment that it parts with the heat received, it will of course resolidify, as has been shown, but it will not solidify so as to fit the cavity which it occupied when in the fluid state. For the liquid molecule in solidifying assumes the crystalline form, and of * Phil. Mag., March, 1869; September, 1870.

+ "Forms of Water," p. 127.

course there will be a definite proportion between the length, breadth, and thickness of the crystal; consequently it will always happen that the interstice in which it solidifies will be too narrow to contain it. The result will be that the fluid molecule in passing into the crystalline form will press the two adjoining molecules aside in order to make sufficient room for itself between them, aud this it will do, no matter what amount of space it may possess in all other directions. The crystal will not form to suit the cavity, the cavity must be made to contain the crystal. And what holds true of one molecule, holds true of every molecule which melts and resolidifies. This process is therefore going on incessantly in every part of the glacier, and in proportion to the amount of heat which the glacier is receiving. This internal molecular pressure, resulting from the solidifying of the fluid molecules in the interstices of the ice, acts on the mass of the ice as an expansive force, tending to cause the glacier to widen out laterally in all directions.

Conceive a mass of ice lying on a flat horizontal surface, and receiving heat on its upper surface, say from the sun; as the heat passes downwards through the mass, the molecules, acting as conductors, melt and resolidify. Each fluid molecule solidifies in an interstice, which has to be widened in order to contain it. The pressure thus exerted by the continual resolidifying of the molecules will cause the mass to widen out laterally, and of course as the mass widens out it will grow thinner and thinner if it does not receive fresh acquisition on its surface. In the case of a glacier lying in a valley, motion, however, will only take place in one direction. The sides of the valley prevent the glacier from widening; and as gravitation opposes the motion of the ice up, and favours its motion down the valley, the path of least resistance to molecular pressure will always be down the slope, and consequently in this direction molecular displacement will take place. Molecular pressure will therefore produce motion in the same direction as that of gravity. In other words, it will tend to cause the glacier to descend the valley.

« AnteriorContinuar »