Imágenes de páginas
PDF
EPUB

stance we are no better off than a band of captives who have found out in what manner to mutilate themselves, so as to render them uninteresting to their victorious foe.

7. But if our knowledge of the nature and habits of organized molecules be so small, our knowledge of the ultimate molecules of inorganic matter is, if possible, still smaller. It is only very recently that the leading men of science have come to consider their very existence as a settled point.

In order to realize what is meant by an inorganic molecule, let us take some sand and grind it into smaller and smaller particles, and these again into still smaller. In point of fact we shall never reach the superlative degree of smallness by this operation—yet in our imagination we may suppose the sub-division to be carried on continuously, always making the particles smaller and smaller. In this case we should, at last, come to an ultimate molecule of sand or oxide of silicon, or, in other words, we should arrive at the smallest entity retaining all the properties of sand, so that were it possible to divide the molecule further the only result would be to separate it into its chemical constituents, consisting of silicon on the one side and oxygen on the other.

We have, in truth, much reason to believe that sand, or any other substance, is incapable of infinite subdivision, and that all we can do in grinding down a solid lump of anything is to reduce it into lumps similar to the original, but only less in size, each of these small

lumps containing probably a great number of individual

molecules.

8. Now, a drop of water no less than a grain of sand is built up of a very great number of molecules, attached to one another by the force of cohesion-a force which is much stronger in the sand than in the water, but which nevertheless exists in both. And, moreover, Sir William Thomson, the distinguished physicist, has recently arrived at the following conclusion with regard to the size of the molecules of water. He imagines a single drop of water to be magnified until it becomes as large as the earth, having a diameter of 8000 miles, and all the molecules to be magnified in the same proportion; and he then concludes that a single molecule will appear, under these circumstances, as somewhat larger than a shot, and somewhat smaller than a cricket ball,

9. Whatever be the value of this conclusion, it enables us to realize the exceedingly small size of the individual molecules of matter, and renders it quite certain that we shall never, by means of the most powerful microscope, succeed in making visible these ultimate molecules. For our knowledge of the sizes, shapes, and properties of such bodies, we must always, therefore, be indebted to indirect evidence of a very complicated nature.

It thus appears that we know little or nothing about the shape or size of molecules, or about the forces which actuate them; and, moreover, the very largest masses of the universe share with the very smallest this property

of being beyond the direct scrutiny of the human senses -the one set because they are so far away, and the other because they are so small.

10. Again, these molecules are not at rest, but, on the contrary, they display an intense and ceaseless energy in their motions. There is, indeed, an uninterrupted warfare going on a constant clashing together of these minute bodies, which are continually maimed, and yet always recover themselves, until, perhaps, some blow is struck sufficiently powerful to dissever the two or more simple atoms that go to form a compound molecule. A new state of things thenceforward is the result.

But a simple elementary atom is truly an immortal being, and enjoys the privilege of remaining unaltered and essentially unaffected amid the most powerful blows that can be dealt against it—it is probably in a state of ceaseless activity and change of form, but it is nevertheless always the same.

11. Now, a little reflection will convince us that we have in this ceaseless activity another barrier to an intimate acquaintance with molecules and atoms, for even if we could see them they would not remain at rest sufficiently long to enable us to scrutinize them.

No doubt there are devices by means of which we can render visible, for instance, the pattern of a quickly revolving coloured disc, for we may illuminate it by a flash of electricity, and the disc may be supposed to be stationary during the extremely short time of the flash.

But we cannot say the same about molecules and atoms, for, could we see an atom, and could we illuminate it by a flash of electricity, the atom would most probably have vibrated many times during the exceedingly small time of the flash. In fine, the limits placed upon our senses, with respect to space and time, equally preclude the possibility of our ever becoming directly acquainted with these exceedingly minute bodies, which are nevertheless the raw materials of which the whole universe is built.

Action and Reaction, Equal and Opposite.

12. But while an impenetrable veil is drawn over the individual in this warfare of clashing atoms, yet we are not left in profound ignorance of the laws which determine the ultimate result of all these motions, taken together as a whole.

In a Vessel of Goldfish.

Let us suppose, for instance, that we have a glass globe containing numerous goldfish standing on the table, and delicately poised on wheels, so that the slightest push, the one way or the other, would make it move. These goldfish are in active and irregular motion, and he would be a very bold man who should venture to predict the movements of an individual fish. But of one thing we may be quite certain: we may rest assured that, notwithstanding all the irregular motions of its living inhabitants,

.

the globe containing the goldfish will remain at rest upon its wheels.

Even if the table were a lake of ice, and the wheels were extremely delicate, we should find that the globe would remain at rest. Indeed, we should be exceedingly surprised if we found the globe going away of its own accord from the one side of the table to the other, or from the one side of a sheet of ice to the other, in consequence of the internal motions of its inhabitants. Whatever be the motions of these individual units, yet we feel sure that the globe cannot move itself as a whole. In such a system, therefore, and, indeed, in every system left to itself, there may be strong internal forces acting between the various parts, but these actions and reactions are equal and opposite, so that while the small parts, whether visible or invisible, are in violent commotion among themselves, yet the system as a whole will remain at rest.

In a Rifle.

13. Now it is quite a legitimate step to pass from this instance of the goldfish to that of a rifle that has just been fired. In the former case, we imagined the globe, together with its fishes, to form one system; and in the latter, we must look upon the rifle, with its powder and ball, as forming one system also.

Let us suppose that the explosion takes place through the application of a spark. Although this spark is an external agent, yet if we reflect a little we shall see that

« AnteriorContinuar »