Imágenes de páginas
PDF
EPUB

that perpetual motion is impossible; for, in truth, he knows very little of these forces. But he does think that he has entered into the spirit and design of Nature, and therefore he denies at once the possibility of such a machine. But he denies it intelligently, and works out this denial of his into a theory which enables him to discover numerous and valuable relations between the properties of matter-produces, in fact, the laws of energy and the great principle of conservation.

Theory of Conservation.

194. We have thus endeavoured to give a short sketch of the history of energy, including its allied problems, up to the dawn of the strictly scientific period. We have seen that the unfruitfulness of the earlier views was due to a want of scientific clearness in the conceptions entertained, and we have now to say a few words regarding the theory of conservation.

Here also the way was pointed out by two philosophers, namely, Grove in this country, and Mayer on the continent, who showed certain relations between the various forms of energy; the name of Séguin ought likewise to be mentioned. Nevertheless, to Joule belongs the honour of establishing the theory on an incontrovertible basis: for, indeed, this is preeminently a case where speculation has to be tested by unimpeachable experimental evidence. Here the magnitude of the principle is so vast, and its importance is so

great, that it requires the strong fire of genius, joined to the patient labours of the scientific experimentalist, to forge the rough ore into a good weapon that will cleave its way through all obstacles into the very citadel of Nature, and into her most secret recesses.

Following closely upon the labours of Joule, we have those of William and James Thomson, Helmholtz, Rankine, Clausius, Tait, Andrews, Maxwell, who, along with many others, have advanced the subject; and while Joule gave his chief attention to the laws which regulate the transmutation of mechanical energy into heat, Thomson, Rankine, and Clausius gave theirs to the converse problem, or that which relates to the transmutation of heat into mechanical energy. Thomson, especially, has pushed forward so resolutely from this point of view that he has succeeded in grasping a principle scarcely inferior in importance to that of the conservation of energy itself, and of this principle it behoves us now to speak.

Dissipation of Energy.

195. Joule, we have said, proved the law according to which work may be changed into heat; and Thomson and others, that according to which heat may be changed into work. Now, it occurred to Thomson that there was a very important and significant difference between these two laws, consisting in the fact that, while you can with the greatest ease transform work into heat, you can by no method in your power transform all the heat back

again into work. In fact, the process is not a reversible one; and the consequence is that the mechanical energy of the universe is becoming every day more and more changed into heat.

It is easily seen that if the process were reversible, one form of a perpetual motion would not be impossible. For, without attempting to create energy by a machine, all that would be needed for a perpetual motion would be the means of utilizing the vast stores of heat that lie in all the substances around us, and converting them into work. The work would no doubt, by means of friction and otherwise, be ultimately reconverted into heat; but if the process be reversible, the heat could again be converted into work, and so on for ever. But the irreversibility of the process puts a stop to all this. In fact, I may convince myself by rubbing a metal button on a piece of wood how easily work can be converted into heat, while the mind completely fails to suggest any method by which this heat can be reconverted into work.

Now, if this process goes on, and always in one direction, there can be no doubt about the issue. The mechanical energy of the universe will be more and more transformed into universally diffused heat, until the universe will no longer be a fit abode for living beings.

The conclusion is a startling one, and, in order to bring it more vividly before our readers, let us now proceed to acquaint ourselves with the various forms of use

ful energy that are at present at our disposal, and at the same time endeavour to trace the ultimate sources of these supplies.

Natural Energies and their Sources.

196. Of energy in repose we have the following varieties:(1.) The energy of fuel. (2.) That of food. (3.) That of a head of water. (4.) That which may be derived from the tides. (5.) The energy of chemical separation implied in native sulphur, native iron, &c.

Then, with regard to energy in action, we have mainly the following varieties:

(1.) The energy of air in motion. in motion.

(2.) That of water

Fuel.

197. Let us begin first with the energy implied in fuel We can, of course, burn fuel, or cause it to combine with

the oxygen of the air; and we are thereby provided with large quantities of heat of high temperature, by means of which we may not only warm ourselves and cook our food, but also drive our heat-engines, using it, in fact, as a source of mechanical power.

Fuel is of two varieties-wood and coal.

Now, if we

consider the origin of these we shall see that they are produced by the sun's rays. Certain of these rays, as we have already remarked (Art. 180), decompose carbonic acid in the leaves of plants, setting free the

oxygen, while the carbon is used for the structure or wood of the plant. Now, the energy of these rays is spent in this process, and, indeed, there is not enough of such energy left to produce a good photographic impression of the leaf of a plant, because it is all spent in making wood.

We thus see that the energy implied in wood is derived from the sun's rays, and the same remark applies to coal. Indeed, the only difference between wood and coal is one of age: wood being recently turned out from Nature's laboratory, while thousands of years have elapsed since coal formed the leaves of living plants.

198. We are, therefore, perfectly justified in saying that the energy of fuel is derived from the sun's rays;* coal being the store which Nature has laid up as a species of capital for us, while wood is our precarious yearly income.

We are thus at present very much in the position of a young heir, who has only recently come into his estate, and who, not content with the income, is rapidly squandering his realized property. This subject has been forcibly brought before us by Professor Jevons, who has remarked that not only are we spending our capital, but we are spending the most available and valuable part of it. For we are now using the surface coal; but a time will come when this will be exhausted, and we shall be compelled to go deep down for our

*This fact seems to have been known at a comparatively early period to Herschel and the elder Stephenson.

« AnteriorContinuar »