Imágenes de páginas
PDF
EPUB

In the next place, let the masses remain unaltered, but let the distance between them be doubled, then the force will be reduced fourfold. Let the distance be tripled, then the force will be reduced ninefold, and so on.

66. Gravitation may be described as a very weak force, capable of acting at a distance, or at least of appearing to do so. It takes the mass of the whole earth to produce the force with which we are so familiar at its surface, and the presence of a large mass of rock or mountain does not produce any appreciable difference in the weight of any substance. It is the gravitation of the earth, lessened of course by distance, which acts upon the moon 240,000 miles away, and the gravitation of the sun influences in like manner the earth and the various other planets of our system,

Elastic Forces.

67. Elastic forces, although in their mode of action very different from gravity, are yet due to visible arrangements of matter; thus, when a cross-bow is bent, there is a visible change produced in the bow, which, as a whole, resists this bending, and tends to resume its previous position. It therefore requires energy to bend a bow, just as truly and visibly as it does to raise a weight above the earth, and elasticity is, therefore, as truly a species of force as gravity is. We shall not here attempt to discuss the various ways in which this force may act, or in which a solid elastic substance will resist

all attempts to deform it; but in all cases it is clearly manifest that work must be spent upon the body, and the force of elasticity must be encountered and overcome throughout a certain space before any sensible deformation can take place.

Force of Cohesion.

68. Let us now leave the forces which animate large masses of matter, and proceed to discuss those which subsist between the smaller particles of which these large masses are composed. And here we must say one word more about molecules and atoms, and the distinction we feel ourselves entitled to draw between these very small bodies, even although we shall never be able to see either the one or the other.

In our first chapter (Art. 7) we supposed the continual sub-division of a grain of sand until we had arrived at the smallest entity retaining all the properties of sand

-this we called a molecule, and nothing smaller than this is entitled to be called sand. If we continue this sub-division further, the molecule of sand separates itself into its chemical constituents, consisting of silicon on the one side, and oxygen on the other. Thus we arrive at last at the smallest body which can call itself silicon, and the smallest which can call itself oxygen, and we have no reason to suppose that either of these is capable of sub-division into something else, since we regard oxygen and silicon as elementary or simple bodies. Now,

these constituents of the silicon molecule are called atoms, so that we say the sand molecule is divisible into atoms of silicon and of oxygen. Furthermore, we have strong reason for supposing that such molecules and atoms really exist, but into the arguments for their existence we cannot now enter-it is one of those things that we must ask our readers to take for granted.

69. Let us now take two molecules of sand. These, when near together, have a very strong attraction for each other. It is, in truth, this attraction which renders it difficult to break up a crystalline particle of sand or rock crystal. But it is only exerted when the molecules are near enough together to form a homogeneous crystalline structure, for let the distance between them be somewhat increased, and we find that all attraction entirely vanishes. Thus there is little or no attraction between different particles of sand, even although they are very closely packed together. In like manner, the integrity of a piece of glass is due to the attraction between its molecules; but let these be separated by a flaw, and it will soon be found that this very small increase of distance greatly diminishes the attraction between the particles, and that the structure will now fall to pieces from the slightest cause. Now, these examples are sufficient to show that molecular attraction or cohesion, as this is called, is a force which acts very powerfully through a certain small distance, but which vanishes altogether when this distance becomes perceptible. Cohesion is

strongest in solids, while in liquids it is much diminished, and in gases it may be said to vanish altogether. The molecules of gases are, in truth, so far away from one another, as to have little or no mutual attraction, a fact proved by Dr. Joule, whose name was mentioned in the last chapter.

Force of Chemical Affinity.

In

70. Let us now consider the mutual forces between atoms. These may be characterized as even stronger than the forces between molecules, but as disappearing still more rapidly when the distance is increased. Let us, for instance, take carbon and oxygen-two substances which are ready to combine together to form carbonic acid, whenever they have a suitable opportunity. this case, each atom of carbon will unite with two of oxygen, and the result will be something quite different from either. Yet under ordinary circumstances carbon, or its representative, coal, will remain unchanged in the presence of oxygen, or of atmospheric air containing oxygen. There will be no tendency to combine together, because although the particles of the oxygen would appear to be in immediate contact with those of the carbon, yet the nearness is not sufficient to permit of chemical affinity acting with advantage. When, however, the hearness becomes sufficient, then chemical affinity begins to operate. We have, in fact, the familiar act of combustion, and, as its consequence, the chemical union of the

carbon or coal with the oxygen of the air, carbonic acid being the result. Here, then, we have a very powerful force acting only at a very small distance, which we name chemical affinity, inasmuch as it represents the attraction exerted between atoms of different bodies in contradistinction to cohesion, which denotes the attraction between molecules of the same body.

71. If we regard gravitation as the representative of forces that act or appear to act, at a distance, we may regard cohesion and chemical affinity as the representatives of those forces which, although very powerful, only act or appear to act through a very small interval of distance.

A little reflection will show us how inconvenient it would be if gravitation diminished very rapidly with the distance; for then even supposing that the bond which retains us to the earth were to hold good, that which retains the moon to the earth might vanish entirely, as well as that which retains the earth to the sun, and the conséquences would be far from pleasant. Reflection will also show us how inconvenient it would be if chemical affinity existed at all distances; if coal, for instance, were to combine with oxygen without the application of heat, it would greatly alter the value of this fuel to mankind, and would materially check the progress of human industry.

« AnteriorContinuar »