Imágenes de páginas
PDF
EPUB

we have carefully removed everything like a current of air, or want of level, or external impulse of any kind, so that when the egg falls we are completely unable to assign the origin of the impulse that has caused it to do so.

214. Now, if the egg happens to fall over the table upon the floor, there is a somewhat considerable transmutation of energy; for the energy of position of the egg, due to the height which it occupied on the table, has all at once been changed into energy of motion, in the first place, and into heat in the second, when the egg comes into contact with the floor.

If, however, the egg happens to fall upon the table, the transmutation of energy is comparatively small.

It thus appears that it depends upon some external impulse, so infinitesimally small as to elude our observation, whether the egg shall fall upon the floor and give rise to a comparatively large transmutation of energy, or whether it shall fall upon the table and give rise to a transmutation comparatively small.

Chemical Instability.

215. We thus see that a body, or system, in unstable equilibrium may become subject to a very considerable transmutation of energy, arising out of a very small cause, or antecedent. In the case now mentioned, the force is that of gravitation, the arrangement being one of visible mechanical instability. But we may have a sub

stance, or system, in which the force at work is not gravity, but chemical affinity, and the substance, or system, may, under certain peculiar conditions, become chemically unstable.

When a substance is chemically unstable, it means that the slightest impulse of any kind may determine a chemical change, just as in the case of the egg the slightest impulse from without occcasioned a mechanical displacement.

In fine, a substance, or system, chemically unstable bears a relation to chemical affinity somewhat similar to that which a mechanically unstable system bears to gravity. Gunpowder is a familiar instance of a chemically unstable substance. Here the slightest spark may prove the precursor of a sudden chemical change, accompanied by the instantaneous and violent generation of a vast volume of heated gas. The various explosive compounds, such as gun-cotton, nitro-glycerine, the fulminates, and many more, are all instances of structures which are chemically unstable.

Machines are of two kinds.

216. When we speak of a structure, or a machine, or a system, we simply mean a number of individual particles associated together in producing some definite result. Thus, the solar system, a timepiece, a rifle, are examples of inanimate machines; while an animal, a human being, an army, are examples of animated struc

tures or machines. Now, such machines or structures are of two kinds, which differ from one another not only in the object sought, but also in the means of attaining that object.

217. In the first place, we have structures or machines in which systematic action is the object aimed at, and in which all the arrangements are of a conservative nature, the element of instability being avoided as much as possible. The solar system, a timepiece, a steam-engine at work, are examples of such machines, and the characteristic of all such is their calculability. Thus the skilled astronomer can tell, with the utmost precision, in what place the moon or the planet Venus will be found this time next year. Or again, the excellence of a timepiece consists in its various hands pointing accurately in a certain direction after a certain interval of time. In like manner we may safely count upon a steamship making so many knots an hour, at least while the outward conditions remain the same. In all these cases we make our calculations, and we are not deceived-the end sought is regularity of action, and the means employed is a stable arrangement of the forces of nature.

218. Now, the characteristics of the other class of machines are precisely the reverse.

Here the object aimed at is not a regular, but a sudden and violent transmutation of energy, while the means employed are unstable arrangements of natural forces.

A rifle at full cock, with a delicate hair-trigger, is a very good instance of such a machine, where the slightest touch from without may bring about the explosion of the gunpowder, and the propulsion of the ball with a very great velocity. Now, such machines are eminently characterized by their incalculability.

219. To make our meaning clear, let us suppose that two sportsmen go out hunting together, each with a good rifle and a good pocket chronometer. After a hard day's work, the one turns to his companion and says:— "It is now six o'clock by my watch; we had better rest ourselves," upon which the other looks at his watch, and he would be very much surprised and exceedingly indignant with the maker, if he did not find it six o'clock also. Their chronometers are evidently in the same state, and have been doing the same thing; but what about their rifles? Given the condition of the one rifle, is it possible by any refinement of calculation to deduce that of the other? We feel at once that the bare supposition is ridiculous.

220. It is thus apparent that, as regards energy, structures are of two kinds. In one of these, the object sought is regularity of action, and the means employed, a stable arrangement of natural forces: while in the other, the end sought is freedom of action, and a sudden transmutation of energy, the means employed being an unstable arrangement of natural forces.

The one set of machines are characterized by their

calculability—the other by their incalculability.

The

one set, when at work, are not easily put wrong, while the other set are characterized by great delicacy of construction.

An Animal is a delicately-constructed Machine.

221. But perhaps the reader may object to our use of the rifle as an illustration.

For although it is undoubtedly a delicately-constructed machine, yet a rifle does not represent the same surpassing delicacy as that, for instance, which characterizes an egg balanced on its longer axis. Even if at full cock, and with a hair trigger, we may be perfectly certain it will not go off of its own accord. Although its object is to produce a sudden and violent transmutation of energy, yet this requires to be preceded by the application of an amount of energy, however small, to the trigger, and if this be not spent upon the rifle, it will not go off. There is, no doubt, delicacy of construction, but this has not risen to the height of incalculability, and it is only when in the hands of the sportsman that it becomes a machine upon the condition of which we cannot calculate.

Now, in making this remark, we define the position of the sportsman himself in the Universe of Energy.

The rifle is delicately constructed, but not surpassingly so; but sportsman and rifle, together, form a machine of surpassing delicacy, ergo the sportsman himself is such a machine. We thus begin to perceive that a

« AnteriorContinuar »