Imágenes de páginas
PDF
EPUB

ponding to those which the equilibrium theory gives, could be considered only as a conjecture, till the comparison with observation was made. It was, however, a natural conjecture; since the waters of the ocean are at every moment tending to acquire the form assumed in the equilibrium theory: and it may be considered likely that the causes which prevent their assuming this form produce an effect nearly constant for each place. Whatever be thought of this reasoning, the conjecture is confirmed by observation with curious exactness. The laws of a great number of the tidal phenomena-namely, of the Semimensual Inequality of the Heights, of the Semi-mensual Inequality of the Times, of the Diurnal Inequality, of the effect of the Moon's Declination, of the effect of the Moon's Parallax-are represented very closely by formulæ derived from the equilibrium theory. The hydrodynamical mode of treating the subject has not added any thing to the knowledge of the laws of the phenomena to which the other view had conducted us.

We may add, that Laplace's assumption, that in the moving fluid the motions must have a periodicity corresponding to that of the forces, is also a conjecture. And though this conjecture may, in some cases of the problem, be verified, by substituting the resulting expressions in the equations of motion, this cannot be done in the actual case, where the revolving motion of the ocean is prevented by the intrusion of tracts of land running nearly from pole to pole.

Yet in Mr. Airy's Treatise On Tides and Waves (in the Encyclopædia Metropolitana) much has been done to bring the hydrodynamical theory of oceanic tides into agreement with observation. In this admirable work, Mr. Airy has, by peculiar artifices, solved problems which come so near the actual cases that they may represent them. He has, in this way, deduced the laws of the semi-diurnal and the diurnal tide, and the other features of the tides which the equilibrium theory in some degree imitates; but he has also, taking into account the effect of friction, shown that the actual tide may be represented as the tide of an earlier epoch;-that the relative mass of the moon and sun, as inferred from the tides, would depend upon the depth of the ocean (Art. 455);—with many other results remarkably explaining the observed phenomena. He has also shown that the relation of the cotidal lines to the tide waves really propagated is, in complex cases, very obscure, because different waves of different magnitudes, travelling in different directions, may coexist, and the cotidal line is the compound result of all these.

With reference to the Maps of Cotidal Lines, mentioned in the text, I may add, that we are as yet destitute of observations which should supply the means of drawing such lines on a large scale in the Pacific Ocean. Admiral Lütke has however supplied us with some valuable materials and remarks on this subject in his Notice sur les Marées Périodiques dans le grand Océan Boréal et dans la Mer Glaciale; and has drawn them, apparently on sufficient data, in the White Sea.]

CHAPTER V.

DISCOVERIES ADDED TO THE NEWTONIAN THEORY.

Sect. 1.-Tables of Astronomical Refraction.

TE have travelled over an immense field of astronomical and math

WE

ematical labor in the last few pages, and have yet, at the end of every step, still found ourselves under the jurisdiction of the Newtonian laws. We are reminded of the universal monarchies, where a man could not escape from the empire without quitting the world. We have now to notice some other discoveries, in which this reference to the law of universal gravitation is less immediate and obvious; I mean the astronomical discoveries respecting Light.

The general truths to which the establishment of the true laws of Atmospheric Refraction led astronomers, were the law of Deflection of the rays of light, which applies to all refractions, and the real structure and size of the Atmosphere, so far as it became known. The great discoveries of Römer and Bradley, namely, the Velocity of Light, the Aberration of Light, and the Nutation of the earth's axis, gave a new distinctness to the conceptions of the propagation of light in the minds of philosophers, and confirmed the doctrines of Copernicus, Kepler, and Newton, respecting the motions which belong to the earth.

The true laws of Atmospheric Refraction were slowly discovered. Tycho attributed the apparent displacement of the heavenly bodies to the low and gross part of the atmosphere only, and hence made it cease at a point half-way to the zenith; but Kepler rightly extended it to the zenith itself. Dominic Cassini endeavored to discover the law of this correction by observation, and gave his result in the form

which, as we have said, sound science prescribes, a Table to be habitually used for all observations. But great difficulties at this time embarrassed this investigation, for the parallaxes of the sun and of the planets were unknown, and very diverse values had been assigned them by different astronomers. To remove some of these difficulties, Richer, in 1762, went to observe at the equator; and on his return, Cassini was able to confirm and amend his former estimations of parallax and refraction. But there were still difficulties. According to La Hire, though the phenomena of twilight give an altitude of 34,000 toises to the atmosphere,' those of refraction make it only John Cassini undertook to support and improve the calculations of his father Dominic, and took the true supposition, that the light follows a curvilinear path through the air. The Royal Society of London had already ascertained experimentally the refractive power of air. Newton calculated a Table of Refractions, which was published under Halley's name in the Philosphical Transactions for 1721, without any indication of the method by which it was constructed. But M. Biot has recently shown,3 by means of the published correspondence of Flamsteed, that Newton had solved the problem in a manner nearly corresponding to the most improved methods of modern analysis.

2000.

Dominic Cassini and Picard proved,' Le Monnier in 1738 confirmed more fully, the fact that the variations of the Thermometer affect the Refraction. Mayer, taking into account both these changes, and the changes indicated by the Barometer, formed a theory, which Lacaille, with immense labor, applied to the construction of a Table of Refractions from observation. But Bradley's Table (published in 1763 by Maskelyne) was more commonly adopted in England; and his formula, originally obtained empirically, has been shown by Young to result from the most probable suppositions we can make respecting the atmosphere. Bessel's Refraction Tables are now considered the best of those which have appeared.

Sect. 2.-Discovery of the Velocity of Light.-Römer.

THE astronomical history of Refraction is not marked by any great discoveries, and was, for the most part, a work of labor only. The progress of the other portions of our knowledge respecting light is

1 Bailly, ii. 612.

2 Ibid. ii. 607.

Biot, Acad. Sc. Compte Rendu, Sept. 5, 1836.

Bailly, iii. 92.

more striking. In 1676, a great number of observations of eclipses of Jupiter's satellites were accumulated, and could be compared with Cassini's Tables. Römer, a Danish astronomer, whom Picard had brought to Paris, perceived that these eclipses happened constantly later than the calculated time at one season of the year, and earlier at another season;—a difference for which astronomy could offer no account. The error was the same for all the satellites; if it had depended on a defect in the Tables of Jupiter, it might have affected all, but the effect would have had a reference to the velocities of the satellites. The cause, then, was something extraneous to Jupiter. Römer had the happy thought of comparing the error with the earth's distance from Jupiter, and it was found that the eclipses happened later in proportion as Jupiter was further off. Thus we see the eclipse later, as it is more remote; and thus light, the messenger which brings us intelligence of the occurrence, travels over its course in a measurable time. By this evidence, light appeared to take about eleven minutes in describing the diameter of the earth's orbit.

This discovery, like so many others, once made, appears easy and inevitable; yet Dominic Cassini had entertained the idea for a moment, and had rejected it; and Fontenelle had congratulated himself publicly on having narrowly escaped this seductive error. The objections to the admission of the truth arose principally from the inaccuracy of observation, and from the persuasion that the motions of the satellites were circular and uniform. Their irregularities disguised the fact in question. As these irregularities became clearly known, Römer's discovery was finally established, and the "Equation of Light" took its place in the Tables.

Sect. 3.-Discovery of Aberration.-Bradley.

IMPROVEMENTS in instruments, and in the art of observing, were requisite for making the next great step in tracing the effect of the laws of light. It appears clear, on consideration, that since light and the spectator on the earth are both in motion, the apparent direction of an object will be determined by the composition of these motions. But yet the effect of this composition of motions was (as is usual in such cases) traced as a fact in observation, before it was clearly seen as a consequence of reasoning. This fact, the Aberration of Light, the greatest astronomical discovery of the eighteenth century, belongs to Bradley,

[blocks in formation]

who was then Professor of Astronomy at Oxford, and afterwards Astronomer Royal at Greenwich. Molyneux and Bradley, in 1725, began a series of observations for the purpose of ascertaining, by observations near the zenith, the existence of an annual parallax of the fixed stars, which Hooke had hoped to detect, and Flamsteed thought he had discovered. Bradley' soon found that the star observed by him had a minute apparent motion different from that which the annual parallax would produce. He thought of a nutation of the earth's axis as a mode of accounting for this; but found, by comparison of a star on the other side of the pole, that this explanation would not apply. Bradley and Molyneux then considered for a moment an annual alteration of figure in the earth's atmosphere, such as might affect the refractions, but this hypothesis was soon rejected. In 1727, Bradley resumed his observations, with a new instrument, at Wanstead, and obtained empirical rules for the changes of declination of different stars. At last, accident turned his thoughts to the direction in which he was to find the cause of the variations which he had discovered. Being in a boat on the Thames, he observed that the vane on the top of the mast gave a different apparent direction to the wind, as the boat sailed one way or the other. Here was an image of his case: the boat represented the earth moving in different directions at different seasons, and the wind represented the light of a star. He had now to trace the consequences of this idea; he found that it led to the empirical rules, which he had already discovered, and, in 1729, he gave his discovery to the Royal Society. His paper is a very happy narrative of his labors and his thoughts. His theory was so sound that no astronomer ever contested it; and his observations were so accurate, that the quantity which he assigned as the greatest amount of the change (one nineteenth of a degree) has hardly been corrected by more recent astronomers. It must be noticed, however, that he considered the effects in declination only; the effects in right ascension required a different mode of observation, and a consummate goodness in the machinery of clocks, which at that time was hardly attained.

Sect. 4.-Discovery of Nutation.

WHEN Bradley went to Greenwich as Astronomer Royal, he continued with perseverance observations of the same kind as those by which he had detected Aberration. The result of these was another

Rigaud's Bradley.

VOL. I.-20

Rigaud, p. xxiii.

« AnteriorContinuar »