Imágenes de páginas
PDF
EPUB

But in all this, the Comet had been supposed to be affected only by the attraction of the sun. The planets must disturb its motion as they disturb each other. How would this disturbance affect the time and circumstances of its reappearance? Halley had proposed, but not attempted to solve, this question.

The effect of perturbations upon a comet defeats all known methods of approximation, and requires immense labor. "Clairaut," says Bailly," undertook this: with courage enough to dare the adventure, he had talent enough to obtain a memorable victory;" the difficulties, the labors, grew upon him as he advanced, but he fought his way through them, assisted by Lalande, and by a female calculator, Madame Lepaute. He predicted that the comet would reach its perihelion April 13, 1759, but claimed the license of a month for the inevitable inaccuracy of a calculation which, in addition to all other sources of error, was made in haste, that it might appear as a prediction. The comet justified his calculations and his caution together; for it arrived at its perihelion on the 13th of March.

Two other Comets, of much shorter period, have been detected of late years; Encke's, which revolves round the sun in three years and one-third, and Biela's, which describes an ellipse, not extremely eccentric, in six years and three-quarters. These bodies, apparently thin and vaporous masses, like other comets, have, since their orbits were calculated, punctually conformed to the law of gravitation. If it were still doubtful whether the more conspicuous comets do so, these bodies would tend to prove the fact, by showing it to be true in an intermediate case.

[2d Ed.] [A third Comet of short period was discovered by Faye, at the Observatory of Paris, Nov. 22, 1843. It is included between. the orbits of Mars and Saturn, and its period is seven years and threetenths.

This is commonly called Faye's Comet, as the two mentioned in the text are called Encke's and Biela's. In the former edition I had expressed my assent to the rule proposed by M. Arago, that the latter ought to be called Gambart's Comet, in honor of the astronomer who first proved it to revolve round the Sun. But astronomers in general have used the former name, considering that the discovery and observation of the object are more distinct and conspicuous merits than a calculation founded upon the observations of others. And in reality,

39 Bailly, A. M. iii. 190.

Biela had great merit in the discovery of his Comet's periodicity, having set about his search of it from an anticipation of its return founded upon former observations.

Also a Comet was discovered by De Vico at Rome on Aug. 22, 1844, which was found to describe an elliptical orbit having its aphelion near the orbit of Jupiter, which is consequently one of those of short period. And on Feb. 26, 1846, M. Brorsen of Kiel discovered a telescopic Comet whose orbit is found to be elliptical.]

We may add to the history of Comets, that of Lexell's, which, in 1770, appeared to be revolving in a period of about five years, and whose motion was predicted accordingly. The prediction was disappointed; but the failure was sufficiently explained by the comet's having passed close to Jupiter, by which occurrence its orbit was utterly deranged.

It results from the theory of universal gravitation, that Comets are collections of extremely attenuated matter. Lexell's is supposed to have passed twice (in 1767 and 1779) through the system of Jupiter's Satellites, without disturbing their motions, though suffering itself so great a disturbance as to have its orbit entirely altered. The same result is still more decidedly proved by the last appearance of Biela's Comet. It appeared double, but the two bodies did not perceptibly affect each other's motions, as I am informed by Professor Challis of Cambridge, who observed both of them from Jan. 23 to Mar. 25, 1846. This proves the quantity of matter in each body to have been exceedingly small.

Thus, no verification of the Newtonian theory, which was possible in the motions of the stars, has yet been wanting. The return of Halley's Comet again in 1835, and the extreme exactitude with which it conformed to its predicted course, is a testimony of truth, which must appear striking even to the most incurious respecting such matters."

Sect. 7.-Application of the Newtonian Theory to the Figure of the Earth.

THE Heavens had thus been consulted respecting the Newtonian doctrine, and the answer given, over and over again, in a thousand

39 M. de Humboldt (Kosmos, p. 116) speaks of nine returns of Halley's Comet, the comet observed in China in 1878 being identified with this. But whether we take 1378 or 1880 for the appearance in that century, if we begin with that, we have only seven appearances, namely, in 1878 or 1880, in 1456, in 1531, in 1607, in 1682, in 1759, and in 1835.

different forms, had been, that it was true; nor had the most persevering cross-examination been able to establish any thing of contradiction or prevarication. The same question was also to be put to the Earth and the Ocean, and we must briefly notice the result.

According to the Newtonian principles, the form of the earth must be a globe somewhat flattened at the poles. This conclusion, or at least the amount of the flattening, depends not only upon the existence and law of attraction, but upon its belonging to each particle of the mass separately; and thus the experimental confirmation of the form asserted from calculation, would be a verification of the theory in its widest sense. The application of such a test was the more necessary to the interests of science, inasmuch as the French astronomers had collected from their measures, and had connected with their Cartesian system, the opinion that the earth was not oblate but oblong. Dominic Cassini had measured seven degrees of latitude from Amiens to Perpignan, in 1701, and found them to decrease in going from south to north. The prolongation of this measure to Dunkirk confirmed the same result. But if the Newtonian doctrine was true, the contrary ought to be the case, and the degrees ought to increase in proceeding towards the pole.

The only answer which the Newtonians could at this time make to the difficulty thus presented, was, that an arc so short as that thus measured, was not to be depended upon for the determination of such a question; inasmuch as the inevitable errors of observation might exceed the differences which were the object of research. It would, undoubtedly, have become the English to have given a more complete answer, by executing measurements under circumstances not liable to this uncertainty. The glory of doing this, however, they for a long time abandoned to other nations. The French undertook the task with great spirit.40 In 1733, in one of the meetings of the French Academy, when this question was discussed, De la Condamine, an ardent and eager man, proposed to settle this question by sending members of the Academy to measure a degree of the meridian near the equator, in order to compare it with the French degrees, and offered himself for the expedition. Maupertuis, in like manner, urged the necessity of another expedition to measure a degree in the neighborhood of the pole. The government received the applications favorably, and these remarkable scientific missions were sent out at the national expense.

40 Bailly, iii. 11.

As soon as the result of these measurements was known, there was no longer any doubt as to the fact of the earth's oblateness, and the question only turned upon its quantity. Even before the return of the academicians, the Cassinis and Lacaille had measured the French arc, and found errors which subverted the former result, making the earth oblate to the amount of 1-168th of its diameter. The expeditions to Peru and to Lapland had to struggle with difficulties in the execution of their design, which make their narratives resemble some romantic history of irregular warfare, rather than the monotonous records of mere measurements. The equatorial degree employed the observers not less than eight years. When they did return, and the results were compared, their discrepancy, as to quantity, was considerable. The comparison of the Peruvian and French arcs gave an ellipticity of nearly 1-314th, that of the Peruvian and Swedish arcs gave 1-213th for its value.

Newton had deduced from his theory, by reasonings of singular ingenuity, an ellipticity of 1-230th; but this result had been obtained by supposing the earth homogeneous. If the earth be, as we should most readily conjecture it to be, more dense in its interior than at its exterior, its ellipticity will be less than that of a homogeneous spheroid revolving in the same time. It does not appear that Newton was aware of this; but Clairaut, in 1743, in his Figure of the Earth, proved this and many other important results of the attraction of the particles. Especially he established that, in proportion as the fraction expressing the Ellipticity becomes smaller, that expressing the Excess of the polar over the equatorial gravity becomes larger; and he thus connected the measures of the ellipticity obtained by means of Degrees, with those obtained by means of Pendulums in different latitudes.

The altered rate of a Pendulum when carried towards the equator, had been long ago observed by Richer and Halley, and had been quoted by Newton as confirmatory of his theory. Pendulums were swung by the academicians who measured the degrees, and confirmed the general character of the results.

But having reached this point of the verification of the Newtonian theory, any additional step becomes more difficult. Many excellent measures, both of Degrees and of Pendulums, have been made since those just mentioned. The results of the Arcs" is an Ellipticity of 1-298th; -of the Pendulums, an Ellipticity of about 1-285th. This difference

41 Airy, Fig. Earth, p. 230.

is considerable, if compared with the quantities themselves; but does not throw a shadow of doubt on the truth of the theory. Indeed, the observations of each kind exhibit irregularities which we may easily account for, by ascribing them to the unknown distribution of the denser portions of the earth; but which preclude the extreme of accuracy and certainty in our result.

But the near agreement of the determination, from Degrees and from Pendulums, is not the only coincidence by which the doctrine is confirmed. We can trace the effect of the earth's Oblateness in certain minute apparent motions of the stars; for the attraction of the sun and moon on the protuberant matter of the spheroid produces the Precession of the equinoxes, and a Nutation of the earth's axis. The Precession had been known from the time of Hipparchus, and the existence of Nutation was foreseen by Newton; but the quantity is so small, that it required consummate skill and great labor in Bradley to detect it by astronomical observation. Being, however, so detected, its amount, as well as that of the Precession, gives us the means of determining the amount of Terrestrial Ellipticity, by which the effect is produced. But it is found, upon calculation, that we cannot obtain this determination without assuming some law of density in the homogeneous strata of which we suppose the earth to consist.42 The density will certainly increase in proceeding towards the centre, and there is a simple and probable law of this increase, which will give 1-300th for the Ellipticity, from the amount of two lunar Inequalities (one in latitude and one in longitude), which are produced by the earth's oblateness. Nearly the same result follows from the quantity of Nutation. Thus every thing tends to convince us that the ellipticity cannot deviate much from this fraction.

[2d Ed.] [I ought not to omit another class of phenomena in which the effects of the Earth's Oblateness, acting according to the law of universal gravitation, have manifested themselves;-I speak of the Moon's Motion, as affected by the Earth's Ellipticity. In this case, as in most others, observation anticipated theory. Mason had inferred from lunar observations a certain Inequality in Longitude, depending upon the distance of the Moon's Node from the Equinox. Doubts were entertained by astronomers whether this inequality really existed; but Laplace showed that such an inequality would arise from the oblate form of the earth; and that its magnitude might serve to de

42 Airy, Fig. Earth, p. 285.

« AnteriorContinuar »