Imágenes de páginas
PDF
EPUB

of ebony sinks in water, while a flat slip of the same material lies on the surface; and it required considerable sagacity to separate such cases from the general rule. Galileo's opinions were attacked by various writers, as Nozzolini, Vincenzio di Grazia, Ludovico delle Colombe; and defended by his pupil Castelli, who published a reply in 1615. These opinions were generally adopted and diffused; but somewhat later, Pascal pursued the subject more systematically, and wrote his Treatise of the Equilibrium of Fluids, in 1653; in which he shows that a fluid, inclosed in a vessel, necessarily presses equally in all directions, by imagining two pistons, or sliding plugs, applied at different parts, the surface of one being centuple that of the other: it is clear, as he observes, that the force of one man acting at the first piston, will balance the force of one hundred men acting at the other. "And thus," says he, "it appears that a vessel full of water is a new Principle of Mechanics, and a new Machine which will multiply force to any degree we choose." Pascal also referred the equilibrium of fluids to the "principle of virtual velocities," which regulates the equilibrium of other machines. This, indeed, Galileo had done before him. It followed from this doctrine, that the pressure which is exercised by the lower parts of a fluid arises from the weight of the upper parts.

In all this there was nothing which was not easily assented to; but the extension of these doctrines to the air required an additional effort of mechanical conception. The pressure of the air on all sides of us, and its weight above us, were two truths which had never yet been apprehended with any kind of clearness. Seneca, indeed,' talks of the "gravity of the air," and of its power of diffusing itself when condensed, as the causes of wind; but we can hardly consider such propriety of phraseology in him as more than a chance; for we see the value of his philosophy by what he immediately adds: “Do you think that we have forces by which we move ourselves, and that the air is left without any power of moving? when even water has a motion of its own, as we see in the growth of plants." We can hardly attach much value to such a recognition of the gravity and elasticity of the air.

Yet the effects of these causes were so numerous and obvious, that the Aristotelians had been obliged to invent a principle to account for them; namely, "Nature's Horror of a Vacuum." To this principle were referred many familiar phenomena, as suction, breathing, the

Quæst. Nat. v. 5.

action of a pair of bellows, its drawing water if immersed in water, its refusing to open when the vent is stopped up. The action of a cupping instrument, in which the air is rarefied by fire; the fact that water is supported when a full inverted bottle is placed in a basin; or when a full tube, open below and closed above, is similarly placed; the running out of the water, in this instance, when the top is opened; the action of a siphon, of a syringe, of a pump; the adhesion of two polished plates, and other facts, were all explained by the fuga vacui. Indeed, we must contend that the principle was a very good one, inasmuch as it brought together all these facts which are really of the same kind, and referred them to a common cause. But when urged as an ultimate principle, it was not only unphilosophical, but imperfect and wrong. It was unphilosophical, because it introduced the notion of an emotion, Horror, as an account of physical facts; it was imperfect, because it was at best only a law of phenomena, not pointing out any physical cause; and it was wrong, because it gave an unlimited extent to the effect. Accordingly, it led to mistakes. Thus Mersenne, in 1644, speaks of a siphon which shall go over a mountain, being ignorant then that the effect of such an instrument was limited to a height of thirty-four feet. A few years later, however, he had detected this mistake; and in his third volume, published in 1647, he puts his siphon in his emendanda, and speaks correctly of the weight of air as supporting the mercury in the tube of Torricelli. It was, indeed, by finding this horror of a vacuum to have a limit at the height of thirty-four feet, that the true principle was suggested. It was discovered that when attempts were made to raise water higher than this, Nature tolerated a vacuum above the water which rose. In 1643, Torricelli tried to produce this vacuum at a smaller height, by using, instead of water, the heavier fluid, quicksilver; an attempt which shows that the true explanation, the balance of the weight of the water by another pressure, had already suggested itself. Indeed, this appears from other evidence. Galileo had already taught that the air has weight; and Baliani, writing to him in 1630, says, "If we were in a vacuum, the weight of the air above our heads would be felt." Descartes also appears to have some share in this discovery; for, in a letter of the date of 1631, he explains the suspension of mercury in a tube, closed at top, by the pressure of the column of air reaching to the clouds.

2 Drinkwater's Galileo, p. 90.

Still men's minds wanted confirmation in this view; and they found such confirmation, when, in 1647, Pascal showed practically, that if we alter the length of the superincumbent column of air by going to a high place, we alter the weight which it will support. This celebrated experiment was made by Pascal himself on a church-steeple in Paris, the column of mercury in the Torricellian tube being used to compare the weights of the air; but he wrote to his brother-in-law, who lived near the high mountain of Puy de Dôme in Auvergne, to request him to make the experiment there, where the result would be more decisive. "You see," he says, "that if it happens that the height of the mercury at the top of the hill be less than at the bottom (which I have many reasons to believe, though all those who have thought about it are of a different opinion), it will follow that the weight and pressure of the air are the sole cause of this suspension, and not the horror of a vacuum: since it is very certain that there is more air to weigh on it at the bottom than at the top; while we cannot say that nature abhors a vacuum at the foot of a mountain more than on its summit."-M. Perrier, Pascal's correspondent, made the observation as he had desired, and found a difference of three inches of mercury, "which," he says, "ravished us with admiration and astonishment."

When the least obvious case of the operation of the pressure and weight of fluids had thus been made out, there were no further difficulties in the progress of the theory of Hydrostatics. When mathematicians began to consider more general cases than those of the action of gravity, there arose differences in the way of stating the appropriate principles: but none of these differences imply any different conception of the fundamental nature of fluid equilibrium.

Sect. 2.-Discovery of the Laws of Motion of Fluids.

THE art of conducting water in pipes, and of directing its motion. for various purposes, is very old. When treated systematically, it has been termed Hydraulics: but Hydrodynamics is the general name of the science of the laws of the motions of fluids, under those or other circumstances. The Art is as old as the commencement of civilization: the Science does not ascend higher than the time of Newton, though attempts on such subjects were made by Galileo and his scholars.

When a fluid spouts from an orifice in a vessel, Castelli saw that the velocity of efflux depends on the depth of the orifice below the

surface but he erroneously judged the velocity to be exactly proportional to the depth. Torricelli found that the fluid, under the inevitable causes of defect which occur in the experiment, would spout nearly to the height of the surface: he therefore inferred, that the full velocity is that which a body would acquire in falling through the depth; and that it is consequently proportional to the square root of the depth. This, however, he stated only as a result of experience, or law of phenomena, at the end of his treatise, De Motu Naturaliter Accelerato, printed in 1643.

Newton treated the subject theoretically in the Principia (1687); but we must allow, as Lagrange says, that this is the least satisfactory passage of that great work. Newton, having made his experiments in another manner than Torricelli, namely, by measuring the quantity of the efflux instead of its velocity, found a result inconsistent with that of Torricelli. The velocity inferred from the quantity discharged, was only that due to half the depth of the fluid.

In the first edition of the Principia, Newton gave a train of reasoning by which he theoretically demonstrated his own result, going upon the principle, that the momentum of the issuing fluid is equal to the momentum which the column vertically over the orifice would generate by its gravity. But Torricelli's experiments, which had given the velocity due to the whole depth, were confirmed on repetition: how was this discrepancy to be explained?

Newton explained the discrepancy by observing the contraction. which the jet, or vein of water, undergoes, just after it leaves the orifice, and which he called the vena contracta. At the orifice, the velocity is that due to half the height; at the vena contracta it is that due to the whole height. The former velocity regulates the quantity of the discharge; the latter, the path of the jet.

This explanation was an important step in the subject; but it made Newton's original proof appear very defective, to say the least. In the second edition of the Principia (1714), Newton attacked the problem in a manner altogether different from his former investigation. He there assumed, that when a round vessel, containing fluid, has a hole in its bottom, the descending fluid may be conceived to be a conoidal mass, which has its base at the surface of the fluid, and its narrow end at the orifice. This portion of the fluid he calls the cataract; and supposes that while this part descends, the surrounding

B. ii. Prop. xxxvii.

parts remain immovable, as if they were frozen; in this way he finds. a result agreeing with Torricelli's experiments on the velocity of the efflux.

We must allow that the assumptions by which this result is obtained are somewhat arbitrary; and those which Newton introduces in attempting to connect the problem of issuing fluids with that of the resistance to a body moving in a fluid, are no less so. But even up to the present time, mathematicians have not been able to reduce problems concerning the motions of fluids to mathematical principles and calculations, without introducing some steps of this arbitrary kind. And one of the uses of experiments on this subject is, to suggest those hypotheses which may enable us, in the manner most consonant with the true state of things, to reduce the motions of fluids to those general laws of mechanics, to which we know they must be subject.

Hence the science of the Motion of Fluids, unlike all the other primary departments of Mechanics, is a subject on which we still need experiments, to point out the fundamental principles. Many such experiments have been made, with a view either to compare the results of deduction and observation, or, when this comparison failed, to obtain purely empirical rules. In this way the resistance of fluids, and the motion of water in pipes, canals, and rivers, has been treated. Italy has possessed, from early times, a large body of such writers. The earlier works of this kind have been collected in sixteen quarto volumes. Lecchi and Michelotti about 1765, Bidone more recently, have pursued these inquiries. Bossut, Buat, Hachette, in France, have labored at the same task, as have Coulomb and Prony, Girard and Poncelet. Eytelwein's German treatise (Hydraulik), contains an account of what others and himself have done. Many of these trains of experiments, both in France and Italy, were made at the expense of governments, and on a very magnificent scale. In England less was done in this way during the last century, than in most other countries. The Philosophical Transactions, for instance, scarcely contain a single paper on this subject founded on experimental investigations. Dr. Thomas Young, who was at the head of his countrymen in so many branches of science, was one of the first to call back attention to this: and Mr. Rennie and others have recently made valuable experiments. In many of the questions now spoken of, the accordance which engineers are able to obtain, between their calculated and observed results,

Rennie, Report to Brit. Assoc.

« AnteriorContinuar »