Imágenes de páginas
PDF
EPUB

accordance of the distances, libration in the diameter of the epicycle was attributed, should, according to the indication of the equations, go in an elliptical path. What an absurdity on my part! as if libration in the diameter might not be a way to the ellipse!"

Another scruple respecting this theory arose from the impossibility of solving, by any geometrical construction, the problem to which Kepler was thus led, namely, "To divide the area of a semicircle in a given ratio, by a line drawn from any point of the diameter." This is still termed "Kepler's Problem," and is, in fact, incapable of exact geometrical solution. As, however, the calculation can be performed, and, indeed, was performed by Kepler himself, with a sufficient degree of accuracy to show that the elliptical hypothesis is true, the insolubility of this problem is a mere mathematical difficulty in the deductive process, to which Kepler's induction gave rise.

Of Kepler's physical reasonings we shall speak more at length on another occasion. His numerous and fanciful hypotheses had discharged their office, when they had suggested to him his many lines of laborious calculation, and encouraged him under the exertions and disappointments to which these led. The result of this work was the formal laws of the motion of Mars, established by a clear induction, since they represented, with sufficient accuracy, the best observations. And we may allow that Kepler was entitled to the praise which he claims in the motto on his first leaf. Ramus had said that if any one would construct an astronomy without hypothesis, he would be ready to resign to him his professorship in the University of Paris. Kepler quotes this passage, and adds, “it is well, Ramus, that you have run from this pledge, by quitting life and your professorship;" if you held it still, I should, with justice, claim it." This was not saying too much, since he had entirely overturned the hypothesis of eccentrics and epicycles, and had obtained a theory which was a mere representation of the motions and distances as they were observed.

14 Ramus perished in the Massacre of St. Bartholomew.

CHAPTER V.

SEQUEL TO THE EPOCH OF Kepler.

RECEPTION, VERIFICATION, AND

EXTENSION OF THE ELLIPTICAL THEORY.

Sect. 1.-Application of the Elliptical Theory to the Planets.

THE

HE extension of Kepler's discoveries concerning the orbit of Mars to the other planets, obviously offered itself as a strong probability, and was confirmed by trial. This was made in the first place upon the orbit of Mercury; which planet, in consequence of the largeness of its eccentricity, exhibits more clearly than the others the circumstances of the elliptical motion. These and various other supplementary portions of the views to which Kepler's discoveries had led, appeared in the latter part of his Epitome Astronomia Copernicana, published in 1622.

The real verification of the new doctrine concerning the orbits and motions of the heavenly bodies was, of course, to be found in the construction of tables of those motions, and in the continued comparison of such tables with observation. Kepler's discoveries had been founded, as we have seen, principally on Tycho's observations. Longomontanus (so called as being a native of Langberg in Denmark), published in 1621, in his Astronomia Danica, tables founded upon the theories as well as the observations of his countryman. Kepler' in 1627 published his tables of the planets, which he called Rudolphine Tables, the result and application of his own theory. In 1633, Lansberg, a Belgian, published also Tabulæ Perpetuæ, a work which was ushered into the world with considerable pomp and pretension, and in which the author cavils very keenly at Kepler and Brahe. We may judge of the impression made upon the astronomical world in general by these rival works, from the account which our countryman Jeremy Horrox has given of their effect on him. He had been seduced by the magnificent promises of Lansberg, and the praises of his admirers, which are prefixed to the work, and was persuaded that the common opinion which preferred Tycho and Kepler to him was a prejudice. In 1636, however, he became acquainted with Crabtree, another young astrono

1 Rheticus, Narratio, p. 98.

mer, who lived in the same part of Lancashire. By him Horrox was warned that Lansberg was not to be depended on; that his hypotheses were vicious, and his observations falsified or forced into agreement with his theories. He then read the works and adopted the opinions of Kepler; and after some hesitation which he felt at the thought of attacking the object of his former idolatry, he wrote a dissertation on the points of difference between them. It appears that, at one time, he intended to offer himself as the umpire who was to adjudge the prize of excellence among the three rival theories of Longomontanus, Kepler, and Lansberg; and, in allusion to the story of ancient mythology, his work was to have been called Paris Astronomicus; we easily see that he would have given the golden apple to the Keplerian goddess. Succeeding observations confirmed his judgment: and the Rudolphine Tables, thus published seventy-six years after the Prutenic, which were founded on the doctrines of Copernicus, were for a long time those universally used.

Sect. 2.-Application of the Elliptical Theory to the Moon.

THE reduction of the Moon's motions to rule was a harder task than the formation of planetary tables, if accuracy was required; for the Moon's motion is affected by an incredible number of different and complex inequalities, which, till their law is detected, appear to defy all theory. Still, however, progress was made in this work. The most important advances were due to Tycho Brahe. In addition to the first and second inequalities of the moon (the Equation of the Centre, known very early, and the Evection, which Ptolemy had discovered), Tycho proved that there was another inequality, which he termed the Variation, which depended on the moon's position with respect to the sun, and which at its maximum was forty minutes and a half, about a quarter of the evection. He also perceived, though not very distinctly, the necessity of another correction of the moon's place depending on the sun's longitude, which has since been termed the Annual Equation.

2

These steps concerned the Longitude of the Moon; Tycho also made important advances in the knowledge of the Latitude. The Inclination of the Orbit had hitherto been assumed to be the same at all

2 We have seen (chap. iii.), that Aboul-Wefa, in the tenth century, had already noticed this inequality; but his discovery had been entirely forgotten long before the time of Tycho, and has only recently been brought again into notice.

times; and the motion of the Node had been supposed uniform. He found that the inclination increased and diminished by twenty minutes, according to the position of the line of nodes; and that the nodes, though they regress upon the whole, sometimes go forwards and sometimes go backwards.

Tycho's discoveries concerning the moon are given in his Progymnasmata, which was published in 1603, two years after the author's death. He represents the Moon's motion in longitude by means of certain combinations of epicycles and eccentrics. But after Kepler had shown that such devices are to be banished from the planetary system, it was impossible not to think of extending the elliptical theory to the moon. Horrox succeeded in doing this; and in 1638 sent this essay to his friend Crabtree. It was published in 1673, with the numerical elements requisite for its application added by Flamsteed. Flamsteed had also (in 1671-2) compared this theory with observation, and found that it agreed far more nearly than the Philolaic Tables of Bullialdus, or the Carolinian Tables of Street (Epilogus ad Tabulas). Moreover Horrox, by making the centre of the ellipse revolve in an epicycle, gave an explanation of the evection, as well as of the equation of the centre.3

Modern astronomers, by calculating the effects of the perturbing forces of the solar system, and comparing their calculations with observation, have added many new corrections or equations to those known at the time of Horrox; and since the Motions of the heavenly bodies were even then affected by these variations as yet undetected, it is clear that the Tables of that time must have shown some errors when compared with observation. These errors much perplexed astronomers, and naturally gave rise to the question whether the motions of the heavenly bodies really were exactly regular, or whether they were not affected by accidents as little reducible to rule as wind and weather. Kepler had held the opinion of the casualty of such errors; but Horrox, far more philosophically, argues against this opinion, though he

3 Horrox (Horrockes as he himself spelt his name) gave a first sketch of his theory in letters to his friend Crabtree in 1688: in which the variation of the eccentricity is not alluded to. But in Crabtree's letter to Gascoigne in 1642, he gives Horrox's rule concerning it; and Flamsteed in his Epilogue to the Tables, published by Wallis along with Horrox's works in 1678, gave an explanation of the theory which made it amount very nearly to a revolution of the centre of the ellipse in an epicycle. Halley afterwards made a slight alteration; but hardly, I think, enough to justify Newton's assertion (Princip. Lib. iii. Prop. 85, Schol.), "Halleius centrum ellipseos in epicyclo locavit." See Baily's Flamsteed, p. 683.

4

allows that he is much embarrassed by the deviations. His arguments show a singularly clear and strong apprehension of the features of the case, and their real import. He says, "these errors of the tables are alternately in excess and defect; how could this constant compensation happen if they were casual? Moreover, the alternation from excess to defect is most rapid in the Moon, most slow in Jupiter and Saturn, in which planets the error continues sometimes for years. If the errors were casual, why should they not last as long in the Moon as in Saturn? But if we suppose the tables to be right in the mean motions, but wrong in the equations, these facts are just what must happen; since Saturn's inequalities are of long period, while those of the Moon are numerous, and rapidly changing." It would be impossible, at the present moment, to reason better on this subject; and the doctrine, that all the apparent irregularities of the celestial motions are really regular, was one of great consequence to establish at this period of the science.

Sect. 3.-Causes of the further Progress of Astronomy.

We are now arrived at the time when theory and observation sprang forwards with emulous energy. The physical theories of Kepler, and the reasonings of other defenders of the Copernican theory, led inevitably, after some vagueness and perplexity, to a sound science of Mechanics; and this science in time gave a new face to Astronomy. But in the mean time, while mechanical mathematicians were generalizing from the astronomy already established, astronomers were accumulating new facts, which pointed the way to new theories and new generalizations. Copernicus, while he had established the permanent length of the year, had confirmed the motion of the sun's apogee, and had shown that the eccentricity of the earth's orbit, and the obliquity of the ecliptic, were gradually, though slowly, diminishing. Tycho had accumulated a store of excellent observations. These, as well as the laws of the motions of the moon and planets already explained, were materials on which the Mechanics of the Universe was afterwards to employ its most matured powers. In the mean time, the telescope had opened other new subjects of notice and speculation; not only confirming the Copernican doctrine by the phases of Venus, and the analogical examples of Jupiter and Saturn, which with their Satellites

VOL. I.-20

• Astron. Kepler. Proleg. p. 17.

« AnteriorContinuar »