Imágenes de páginas
PDF
EPUB

In the first place, we may observe that the leading thought which suggested and animated all Kepler's attempts was true, and we may add, sagacious and philosophical; namely, that there must be some numerical or geometrical relations among the times, distances, and velocities of the revolving bodies of the solar system. This settled and constant conviction of an important truth regulated all the conjectures, apparently so capricious and fanciful, which he made and examined, respecting particular relations in the system.

In the next place, we may venture to say, that advances in knowledge are not commonly made without the previous exercise of some boldness and license in guessing. The discovery of new truths requires, undoubtedly, minds careful and scrupulous in examining what is suggested; but it requires, no less, such as are quick and fertile in suggesting. What is Invention, except the talent of rapidly calling before us many possibilities, and selecting the appropriate one? It is true, that when we have rejected all the inadmissible suppositions, they are quickly forgotten by most persons; and few think it necessary to dwell on these discarded hypotheses, and on the process by which they were condemned, as Kepler has done. But all who discover truths must have reasoned upon many errors, to obtain each truth; every accepted doctrine must have been one selected out of many candidates. In making many conjectures, which on trial proved erroneous, Kepler was no more fanciful or unphilosophical than other discoverers have been. Discovery is not a "cautious" or "rigorous" process, in the sense of abstaining from such suppositions. But there are great differences in different cases, in the facility with which guesses are proved to be errors, and in the degree of attention with which the error and the proof are afterwards dwelt on. Kepler certainly was remarkable for the labor which he gave to such self-refutations, and for the candor and copiousness with which he narrated them; his works are in this way extremely curious and amusing; and are a very instructive exhibition of the mental process of discovery. But in this respect, I venture to believe, they exhibit to us the usual process (somewhat caricatured) of inventive minds: they rather exemplify the rule of genius than (as has generally been hitherto taught) the exception. We may add, that if many of Kepler's guesses now appear fanciful and absurd, because time and observation have refuted them, others, which were at the time equally gratuitous, have been confirmed by succeeding discoveries in a manner which makes them appear marvellously sagacious; as, for instance, his assertion of the rotation of

the sun on his axis, before the invention of the telescope, and his opinion that the obliquity of the ecliptic was decreasing, but would, after a long-continued diminution, stop, and then increase again. Nothing can be more just, as well as more poetically happy, than Kepler's picture of the philosopher's pursuit of scientific truth, conveyed by means of an allusion to Virgil's shepherd and shepherdess:

Malo me Galatea petit, lasciva puella

Et fugit ad salices et se cupit ante videri.

Coy yet inviting, Galatea loves

To sport in sight, then plunge into the groves;
The challenge given, she darts along the green,
Will not be caught, yet would not run unseen.

We may notice as another peculiarity of Kepler's reasonings, the length and laboriousness of the processes by which he discovered the errors of his first guesses. One of the most important talents requisite for a discoverer, is the ingenuity and skill which devises means for rapidly testing false suppositions as they offer themselves. This talent Kepler did not possess: he was not even a good arithmetical calculator, often making mistakes, some of which he detected and laments, while others escaped him to the last. But his defects in this respect were compensated by his courage and perseverance in undertaking and executing such tasks; and, what was still more admirable, he never allowed the labor he had spent upon any conjecture to produce any reluctance in abandoning the hypothesis, as soon as he had evidence of its inaccuracy. The only way in which he rewarded himself for his trouble, was by describing to the world, in his lively manner, his schemes, exertions, and feelings.

The mystical parts of Kepler's opinions, as his belief in astrology, his persuasion that the earth was an animal, and many of the loose moral and spiritual as well as sensible analyses by which he represented to himself the powers which he supposed to prevail in the universe, do not appear to have interfered with his discovery, but rather to have stimulated his invention, and animated his exertions. Indeed, where there are clear scientific ideas on one subject in the mind, it does not appear that mysticism on others is at all unfavorable to the successful prosecution of research.

I conceive, then, that we may consider Kepler's character as containing the general features of the character of a scientific discoverer,

Bailly, A. M. iii. 175.

though some of the features are exaggerated, and some too feebly marked. His spirit of invention was undoubtedly very fertile and ready, and this and his perseverance served to remedy his deficiency in mathematical artifice and method. But the peculiar physiognomy is given to his intellectual aspect by his dwelling in a most prominent manner on those erroneovs trains of thought which other persons conceal from the world, and often themselves forget, because they find means of stopping them at the outset. In the beginning of his book (Argumenta Capitum) he says, "if Christopher Columbus, if Magellan, if the Portuguese, when they narrate their wanderings, are not only excused, but if we do not wish these passages omitted, and should lose much pleasure if they were, let no one blame me for doing the same." Kepler's talents were a kindly and fertile soil, which he cultivated with abundant toil and vigor; but with great scantiness of agricultural skill and implements. Weeds and the grain throve and flourished side by side almost undistinguished; and he gave a peculiar appearance to his harvest, by gathering and preserving the one class of plants with as much care and diligence as the other.

Sect. 2.-Kepler's Discovery of his Third Law.

I SHALL now give some account of Kepler's speculations and discoveries. The first discovery which he attempted, the relation among the successive distances of the planets from the sun, was a failure; his doctrine being without any solid foundation, although propounded by him with great triumph, in a work which he called Mysterium Cosmographicum, and which was published in 1596. The account which he gives of the train of his thoughts on this subject, namely, the various suppositions assumed, examined, and rejected, is curious and instructive, for the reasons just stated; but we shall not dwell upon these essays, since they led only to an opinion now entirely abandoned. The doctrine which professed to give the true relation of the orbits of the different planets, was thus delivered: "The orbit of the earth is a circle: round the sphere to which this circle belongs, describe a dodecahedron; the sphere including this will give the orbit of Mars. Round Mars describe a tetrahedron; the circle including this will be the orbit of Jupiter. Describe a cube round Jupiter's orbit; the circle including this will be the orbit of Saturn. Now inscribe in the Earth's orbit an icosahedron; the circle inscribed in it will be the orbit of Venus. In

L. U. K. Kepler, 6.

scribe an octahedron in the orbit of Venus; the circle inscribed in it will be Mercury's orbit. This is the reason of the number of the planets." The five kinds of polyhedral bodies here mentioned are the only "Regular Solids."

But though this part of the Mysterium Cosmographicum was a failure, the same researches continued to occupy Kepler's mind; and twenty-two years later led him to one of the important rules known to us as "Kepler's Laws;" namely, to the rule connecting the mean distances of the planets from the sun with the times of their revolutions. This rule is expressed in mathematical terms, by saying that the squares of the periodic times are in the same proportion as the cubes of the distances; and was of great importance to Newton in leading him to the law of the sun's attractive force. We may properly consider this discovery as the sequel of the train of thought already noticed. In the beginning of the Mysterium, Kepler had said, "In the year 1595, I brooded with the whole energy of my mind on the subject of the Copernican system. There were three things in particular of which I pertinaciously sought the causes why they are not other than they are; the number, the size, and the motion of the orbits." We have seen the nature of his attempt to account for the two first of these points. He had also made some essays to connect the motions of the planets with their distances, but with his success in this respect he was not himself completely satisfied. But in the fifth book of the Harmonice Mundi, published in 1619, he says, "What I prophesied two-andtwenty years ago as soon as I had discovered the Five Solids among the Heavenly Bodies; what I firmly believed before I had seen the Harmonics of Ptolemy; what I promised my friends in the title of this book (On the most perfect Harmony of the Celestial Motions), which I named before I was sure of my discovery; what sixteen years ago I regarded as a thing to be sought; that for which I joined Tycho Brahe, for which I settled in Prague, for which I have devoted the best part of my life to astronomical contemplations; at length I have brought to light, and have recognized its truth beyond my most sanguine expectations."

The rule thus referred to is stated in the third Chapter of this fifth Book. "It is," he says, "a most certain and exact thing that the proportion which exists between the periodic times of any two planets is precisely the sesquiplicate of the proportion of their mean distances; that is, of the radii of the orbits. Thus, the period of the earth is one year, that of Saturn thirty years; if any one trisect the proportion, that

is, take the cube root of it, and double the proportion so found, that is, square it, he will find the exact proportion of the distances of the Earth and of Saturn from the sun. For the cube root of 1 is 1, and the square of this is 1; and the cube root of 30 is greater than 3, and therefore the square of it is greater than 9. And Saturn at his mean distance from the sun is at a little more than 9 times the mean distance of the Earth."

When we now look back at the time and exertions which the establishment of this law cost Kepler, we are tempted to imagine that he was strangely blind in not seeing it sooner. His object, we might reason, was to discover a law connecting the distances and the periodic times. What law of connection could be more simple and obvious, we might say, than that one of these quantities should vary as some power of the other, or as some root; or as some combination of the two, which in a more general view, may still be called a power? And if the problem had been viewed in this way, the question must have occurred, to what power of the periodic times are the distances proportional? And the answer must have been, the trial being made, that they are proportional to the square of the cube root. This expost-facto obviousness of discoveries is a delusion to which we are liable with regard to many of the most important principles. In the case of Kepler, we may observe, that the process of connecting two classes of quantities by comparing their powers, is obvious only to those who are familiar with general algebraical views; and that in Kepler's time, algebra had not taken the place of geometry, as the most usual vehicle of mathematical reasoning. It may be added, also, that Kepler always sought his formal laws by means of physical reasonings; and these, though vague or erroneous, determined the nature of the mathematical connection which he assumed. Thus in the Mysterium he had been led by his notions of moving virtue of the sun to this conjecture, among others-that, in the planets, the increase of the periods will be double of the difference of the distances; which supposition he found to give him an approach to the actual proportion of the distances, but one not sufficiently close to satisfy him.

The greater part of the fifth Book of the Harmonics of the Universe consists in attempts to explain various relations among the distances, times, and eccentricities of the planets, by means of the ratios which belong to certain concords and discords. This portion of the work is so complex and laborious, that probably few modern readers have had courage to go through it. Delambre acknowledged that his patience

« AnteriorContinuar »