Imágenes de páginas
PDF
EPUB

We may, therefore, consider the prevalence of Collections of the kind just referred to, as indicating a deficiency of philosophical talent in the ages now under review. As evidence of the same character, we may add the long train of publishers of Abstracts, Epitomes, Bibliographical Notices, and similar writers. All such writers are worthless for all purposes of science, and their labors may be considered as dead works; they have in them no principle of philosophical vitality; they draw their origin and nutriment from the death of true physical knowledge; and resemble the swarms of insects that are born from the perishing carcass of some noble animal.

2. Indistinctness of Ideas in Mechanics.-But the indistinctness of thought which is so fatal a feature in the intellect of the stationary period, may be traced more directly in the works, even of the best authors, of those times. We find that they did not retain steadily the ideas on which the scientific success of the previous period had depended. For instance, it is a remarkable circumstance in the history of the science of Mechanics, that it did not make any advance from the time of Archimedes to that of Stevinus and Galileo. Archimedes had established the doctrine of the lever; several persons tried, in the intermediate time, to prove the property of the inclined plane, and none of them succeeded. But let us look to the attempts; for example, that of Pappus, in the eighth Book of his Mathematical Collections, and we may see the reason of the failure. His Problem shows, in the very terms in which it is propounded, the want of a clear apprehension of the subject. "Having given the power which will draw a given weight along the horizontal plane, to find the additional power which will draw the same weight along a given inclined plane." This is proposed without previously defining how Powers, producing such effects, are to be measured; and as if the speed with which the body were drawn, and the nature of the surface of the plane, were of no consequence. The proper elementary Problem is, To find the force which will support a body on a smooth inclined plane; and no doubt the solution of Pappus has more reference to this problem than to his own. His reasoning is, however, totally at variance with mechanical ideas on any view of the problem. He supposes the weight to be formed into a sphere; and this sphere being placed in contact with the inclined plane, he assumes that the effect will be the same as if the weight were supported on a horizontal lever, the fulcrum being the point of contact of the sphere with the plane, and the power acting at the circumference of the sphere. Such an assumption implies an entire

absence of those distinct ideas of force and mechanical pressure, on which our perception of the identity or difference of different modes of action must depend;—of those ideas by the help of which Archimedes had been able to demonstrate the properties of the lever, and Stevinus afterwards discovered the true solution of the problem of the inclined plane. The motive to Pappus's assumption was probably no more than this;-he perceived that the additional power, which he thus obtained, vanished when the plane became horizontal, and increased as the inclination became greater. Thus his views were vague; he had no clear conception of mechanical action, and he tried a geometrical conjecture. This is not the way to real knowledge.

Pappus (who lived about a. D. 400) was one of the best mathematicians of the Alexandrian school; and, on subjects where his ideas were so indistinct, it is not likely that any much clearer were to be found in the minds of his contemporaries. Accordingly, on all subjects of speculative mechanics, there appears to have been an entire confusion and obscurity of thought till modern times. Men's minds were busy in endeavoring to systematize the distinctions and subtleties of the Aristotelian school, concerning Motion and Power; and, being thus employed among doctrines in which there was involved no definite meaning capable of real exemplification, they, of course, could not acquire sound physical knowledge. We have already seen that the physical opinions of Aristotle, even as they came from him, had no proper scientific precision. His followers, in their endeavors to perfect and develop his statements, never attempted to introduce clearer ideas than those of their master; and as they never referred, in any steady manner, to facts, the vagueness of their notions was not corrected by any collision with observation. The physical doctrines which they extracted from Aristotle were, in the course of time, built up into a regular system; and though these doctrines could not be followed into a practical application without introducing distinctions and changes, such as deprived the terms of all steady signification, the dogmas continued to be repeated, till the world was persuaded that they were selfevident; and when, at a later period, experimental philosophers, such as Galileo and Boyle, ventured to contradict these current maxims, their new principles sounded in men's ears as strange as they now sound familiar. Thus Boyle promulgated his opinions on the mechanics of fluids, as "Hydrostatical Paradoxes, proved and illustrated by experiments." And the opinions which he there opposes, are those which the Aristotelian philosophers habitually propounded as certain

and indisputable; such, for instance, as that "in fluids the upper parts do not gravitate on the lower;" that "a lighter fluid will not gravitate on a heavier;" that "levity is a positive quality of bodies as well as gravity." So long as these assertions were left uncontested and untried, men heard and repeated them, without perceiving the incongruities which they involved: and thus they long evaded refutation, amid, the vague notions and undoubting habits of the stationary period. But when the controversies of Galileo's time had made men think with more acuteness and steadiness, it was discovered that many of these doctrines were inconsistent with themselves, as well as with experiment. We have an example of the confusion of thought to which the Aristotelians were liable, in their doctrine concerning falling bodies. "Heavy bodies," said they, "must fall quicker than light ones; for weight is the cause of their fall, and the weight of the greater bodies is greater." They did not perceive that, if they considered the weight of the body as a power acting to produce motion, they must consider the body itself as offering a resistance to motion; and that the effect must depend on the proportion of the power to the resistance; in short, they had no clear idea of accelerating force. This defect runs through all their mechanical speculations, and renders them entirely valueless.

Lucan

We may exemplify the same confusion of thought on mechanical subjects in writers of a less technical character. Thus, if men had any distinct idea of mechanical action, they could not have accepted for a moment the fable of the Echineis or Remora, a little fish which was said to be able to stop a large ship merely by sticking to it.' refers to this legend in a poetical manner, and notices this creature only in bringing together a collection of monstrosities; but Pliny relates the tale gravely, and moralizes upon it after his manner. "What," he cries, "is more violent than the sea and the winds? what a greater work of art than a ship? Yet one little fish (the Echineis) can hold back all these when they all strain the same way. The winds may

Lucan is describing one of the poetical compounds produced in incantations.
Hue quicquid fætu genuit Natura sinistro

Miscetur: non spuma canum quibus unda timori est,
Viscera non lyncis, non duræ nodus hyænse
Defuit, et cervi pasti serpente medullæ ;
Non puppes retinens, Euro tendente rudentes
In mediis Echineis aquis, oculique draconum.
Etc.

2 Plin. Hist. N. xxxii. 5.

Pharsalia, iv. 670.

blow, the waves may rage; but this small creature controls their fury, and stops a vessel, when chains and anchors would not hold it: and this it does, not by hard labor, but merely by adhering to it. Alas, for human vanity! when the turreted ships which man has built, that he may fight from castle-walls, at sea as well as at land, are held captive and motionless by a fish a foot and a half long! Such a fish is said to have stopped the admiral's ship at the battle of Actium, and compelled Antony to go into another. And in our own memory, one of these animals held fast the ship of Caius, the emperor, when he was sailing from Astura to Antium. The stopping of this ship, when all the rest of the fleet went on, caused surprise; but this did not last long, for some of the men jumped into the water to look for the fish, and found it sticking to the rudder; they showed it to Caius, who was indignant that this animal should interpose its prohibition to his progress, when impelled by four hundred rowers. It was like a slug; and had no power, after it was taken into the ship."

A very little advance in the power of thinking clearly on the force which it exerted in pulling, would have enabled the Romans to see that the ship and its rowers must pull the adhering fish by the hold the oars had upon the water; and that, except the fish had a hold equally strong on some external body, it could not resist this force.

3. Indistinctness of Ideas shown in Architecture.-Perhaps it may serve to illustrate still further the extent to which, under the Roman empire, men's notions of mechanical relations became faint, wavered, and disappeared, if we observe the change which took place in architecture. All architecture, to possess genuine beauty, must be mechanically consistent. The decorative members must represent a structure which has in it a principle of support and stability. Thus the Grecian colonnade was a straight horizontal beam, resting on vertical props; and the pediment imitated a frame like a roof, where oppositely inclined beams support each other. These forms of building were, therefore, proper models of art, because they implied supporting forces. But to be content with colonnades and pediments, which, though they imitated the forms of the Grecian ones, were destitute of their mechanical truth, belonged to the decline of art; and showed that men had lost the idea of force, and retained only that of shape. Yet this was what the architects of the Roman empire did. Under their hands, the pediment was severed at its vertex, and divided into separate halves, so that it was no longer a mechanical possibility. The entablature no longer lay straight from pillar to pillar, but, projecting over each

[ocr errors]
« AnteriorContinuar »