Imágenes de páginas
PDF
EPUB

experiment may be made more striking, but not more instructive, than with the kettle.

12. Look to your bedroom windows when the weather is very cold outside; they sometimes stream with water derived from the condensation of the aqueous vapour from your own lungs. The windows of railway carriages in winter show this condensation in a striking manner. Pour cold water into a dry drinking-glass on a summer's day: the outside surface of the glass becomes instantly dimmed by the precipitation of moisture. On a warm day you notice no vapour in front of your mouth, but on a cold day you form there a little cloud derived from the condensation of the aqueous vapour from the lungs.

13. You may notice in a ball-room that as long as the door and windows are kept closed, and the room remains hot, the air remains clear; but when the doors or windows are opened a dimness is visible, caused by the precipitation to fog of the aqueous vapour of the ball-room. If the weather be intensely cold the entrance of fresh air may even cause snow to fall. This has been observed in Russian ball-rooms; and also in the subterranean stables at Erzeroom, when the doors are opened and the cold morning air is permitted to enter.

14. Even on the driest day this vapour is never absent from our atmosphere. The vapour diffused through the air of this room may be congealed to hoar frost in your presence. This is done by filling a

vessel with a mixture of pounded ice and salt, which is colder than the ice itself, and which, therefore, condenses and freezes the aqueous vapour. The surface of the vessel is finally coated with a frozen fur, so thick that it may be scraped away and formed into a snow-ball.

15. To produce the cloud, in the case of the locomotive and the kettle, heat is necessary. By heating the water we first convert it into steam, and then by chilling the steam we convert it into cloud. Is there any fire in nature which produces the clouds of our atmosphere? There is: the fire of the sun.

16. Thus, by tracing backward, without any break in the chain of occurrences, our river from its end to its real beginnings, we come at length to the sun.

$ 2.

17. There are, however, rivers which have sources somewhat different from those just mentioned. They do not begin by driblets on a hill side, nor can they be traced to a spring. Go, for example, to the mouth of the river Rhone, and trace it backwards to Lyons, where it turns to the east. Bending round by Chambery, you come at length to the Lake of Geneva, from which the river rushes, and which you might be disposed to regard as the source of the Rhone. But go to the head of the lake, and you find that the Rhone there enters it, that the lake is in fact a kind of expansion of the river.

Follow this upwards; you find it joined by smaller rivers from the mountains right and left. Pass these, and push your journey higher still. You come at length to a huge mass of ice-the end of a glacier-which fills the Rhone valley, and from the bottom of the glacier the river rushes. In the glacier of the Rhone you thus find the source of the river Rhone.

18. But again we have not reached the real beginning of the river. You soon convince yourself that this earliest water of the Rhone is produced by the melting of the ice. You get upon the glacier and walk upwards along it. After a time the ice disappears and you come upon snow. If you are a competent mountaineer you may go to the very top of this great snow-field, and if you cross the top and descend at the other side you finally quit the snow, and get upon another glacier called the Trift, from the end of which rushes a river smaller than the Rhone.

19. You soon learn that the mountain snow feeds the glacier. By some means or other the snow is converted into ice. But whence comes the snow? Like the rain, it comes from the clouds, which, as before, can be traced to vapour raised by the sun. Without solar fire we could have no atmospheric vapour, without vapour no clouds, without clouds no snow, and without snow no glaciers. Curious then as the conclusion may be, the cold ice of the Alps has its origin in the heat of the sun.

§ 3. The Waves of Light.

20. But what is the sun? We know its size and its weight. We also know that it is a globe of fire far hotter than any fire upon earth. But we now enter upon another enquiry. We have to learn definitely what is the meaning of solar light and solar heat; in what way they make themselves known to our senses; by what means they get from the sun to the earth, and how, when there, they produce the clouds of our atmosphere, and thus originate our rivers and our glaciers.

21. If in a dark room you close your eyes and press the eyelid with your finger-nail, a circle of light will be seen opposite to the point pressed, while a sharp blow upon the eye produces the impression of a flash of light. There is a nerve specially devoted to the purposes of vision which comes from the brain to the back of the eye, and there divides into fine filaments, which are woven together to a kind of screen called the retina. The retina can be excited in various ways so as to produce the consciousness of light; it may, as we have seen, be excited by the rude mechanical action of a blow imparted to the eye.

22. There is no spontaneous creation of light by the healthy eye. To excite vision the retina must be affected by something coming from without. What is that something? In some way or other luminous

bodies have the power of affecting the retina-but how?

23. It was long supposed that from such bodies issued, with inconceivable rapidity, an inconceivably fine matter, which flew through space, passed through the pores supposed to exist in the humours of the eye, reached the retina behind, and by their shock against the retina, aroused the sensation of light.

24. This theory, which was supported by the greatest men, among others by Sir Isaac Newton, was found competent to explain a great number of the phenomena of light, but it was not found competent to explain all the phenomena. As the skill and knowledge of experimenters increased, large classes of facts were revealed which could only be explained by assuming that light was produced, not by a fine matter flying through space and hitting the retina, but by the shock of minute waves against the retina.

25. Dip your finger into a basin of water, and cause it to quiver rapidly to and fro. From the point of disturbance issue small ripples which are carried forward by the water, and which finally strike the basin. Here, in the vibrating finger, you have a source of agitation; in the water you have a vehicle through which the finger's motion is transmitted, and you have finally the side of the basin which receives the shock of the little

waves.

26. In like manner, according to the wave theory of

« AnteriorContinuar »