Imágenes de páginas
PDF
EPUB

tion and carefully levelled.

The telescope is directed.

first upon the standard point at the opposite side of the valley, being moved by a tangent screw until the intersection of the spider's threads accurately covers the point. The telescope is then lowered to the first stake, beside which our trained assistant is already standing. He is provided with a staff with feet and inches marked on it. that the stake has moved down. assistant recovers the point from which we started yesterday, and then determines the distance from this point to the stake. It is, say, 6 inches; through this distance, therefore, the stake has moved.

A glance shows us
By our signals the

160. We are careful to note the hour and minute at which each stake is driven in, and the hour and the minute when its distance from its first position is measured; this enables us to calculate the accurate daily motion of the point in question. The distances through which all the other points have moved are determined in precisely the same way.

161. Thus we shall proceed to work, first making clear to our minds what is to be done, and then making sure that it shall be accurately done. To give our work reality, I will here record the actual measurements executed, and the actual thoughts suggested, on the Mer de Glace in 1857. The only unreality that I would ask you to allow, is that you and I are supposed to be making the observations together. The labour

F

of measuring was undertaken for the most part by Mr. Hirst.

§ 22. Motion of the Mer de Glace.

162. On July 14, then, we find ourselves at the end of the Glacier des Bois, not far from the source of the Arveiron. We direct our telescope across the glacier, and fix the intersection of its spider's threads accurately upon the edge of a pinnacle of ice. We leave the instrument untouched, looking through it from hour to hour. The edge of ice moves slowly, but plainly, past the fibres, and at the end of three hours we assure ourselves that the motion has amounted to several inches. While standing near the vault of the Arveiron, and talking about going into it, its roof gives way, and falls with the sound of thunder. It is not, therefore, without reason that I warned you against entering these vaults in summer.

163. We ascend to the Montanvert Inn, fix on it as a residence, and then descend to the lateral moraine of the glacier a little below the inn. Here we erect our theodolite, and mark its exact position by a plummet. We must first make sure that our line is perpendicular, or nearly so, to the axis or middle line of the glacier. Our instructed assistant lays down a long staff in the direction of the axis, assuring himself, by looking up and down, that it is the true direction. With another staff in his hand, pointed towards our theodolite, he shifts his position until the second staff is perpendicular to the

first. Here he gives us a signal. We direct our telescope upon him, and then gradually raising its end in a vertical plane we find, and note by sketching, a standard point at the other side of the glacier. This point known, and our plummet mark known, we can on any future day find our line. (To render the measurements more intelligible, I append on the next page an outline diagram of the Mer de Glace, and of its tributaries.)

164. Along the line just described ten stakes were set on July 17, 1857. Their displacements were measured on the following day. Two of them had fallen, but here are the distances passed over by the eight remaining ones in twenty-four hours.

DAILY MOTION OF THE MER DE GLACE.

FIRST LINE: AA' UPON THE SKETCH.

[merged small][merged small][ocr errors][ocr errors][merged small][merged small][merged small]

165. You have already assured yourself by actual contact that the body of the glacier is real ice, and you may have read that glaciers move; but the actual observation of the motion of a body apparently so rigid is strangely interesting. And not only does the ice. move bodily, but one part of it moves past another; the rate of motion augmenting gradually from 12 inches a day at the side to 33 inches a day at a distance from the side. This quicker movement of the central ice of glaciers had been already observed by

[graphic]

Grande Jorasse.

[ocr errors]
[ocr errors]
[ocr errors]

OUTLINE PLAN, SHOWING THE MEASURED LINES OF THE MER DE GLACE AND ITS TRIBUTARIES.

THE FORMS OF WATER IN CLOUDS, RIVERS, ETC. 69

Agassiz and Forbes; we verify their results, and now proceed to something new. Crossing the Glacier du Géant, which occupies more than half the valley, we find that our line of stakes is not yet at an end. The 10th stake stands on the part of the ice which comes from the Talèfre.

166. Now the motion of the sides is slow, because of the friction of the ice against its boundaries; but then one would think that midway between the boundaries, where the friction of the sides is least, the motion ought to be greatest. This is clearly not the case; for though the 10th stake is nearer than the 9th to the eastern or Chapeau side of the valley, the 10th stake surpasses the 9th by 6 inches a day.

167. Here we have something to think of; but before a natural philosopher can think with comfort he must be perfectly sure of his facts. The foregoing line ran across the glacier a little below the Montanvert. We will run another line across a little way above the hotel. On July 18 we set out this line, and to multiply our chances of discovery we place along it 31 stakes. On the subsequent day five of these were found unfit for use; but here are the distances passed over by the remaining six-and-twenty in 24 hours.

Stake

Inches

Stake

Inches

West

SECOND LINE: BB' UPON THE SKETCH.

2 3 4 5 6 7 8 9 10 11 12 13
11 12 15 15 16 17 18 19 20 20 21 21
15 16 17 18 19 20 21
23 23 23 21 23 21 25 22 22 23 25 26
East

22223

23 24 25 26

« AnteriorContinuar »