Imágenes de páginas
PDF
EPUB

point. If we diminish the quantity of warm water conveyed from the equatorial regions to the temperate and arctic regions, the temperature of the equator will begin to rise, and that of the poles to sink. It is probable, however, that this process would affect the temperature of the poles more than it would that of the equator; for as the warm water flows from the equator to the poles, the area over which it is spread becomes less and less. But as the water from the tropics has to raise the temperature of the temperate regions as well as the polar, the difference of effect at the equator and poles might not, on that account, be so very great. Let us take a rough estimate. Say that, as the temperature of the equator rises one degree, the temperature of the poles sinks one degree and a half. The mean annual temperature of the globe is about 58°. The mean temperature of the equator is 80°, and that of the poles 0°. Let ocean and aërial currents now begin to cease, the temperature of the equator commences to rise and the temperature of the poles to sink. For every degree that the temperature of the equator rises, that of the poles sinks 140; and when the currents are all stopped and each place becomes dependent solely upon the direct rays of the sun, the mean annual temperature of the equator above that of space will be to that of the poles, above that of space, as 12 to 5. When this proportion is reached, the equator will be 374° above that of space, and the poles 156°; for 374 is to 156 as 12 is to 5. The temperature of space we have seen to be -239°, consequently the temperature of the equator will in this case be 135°, reckoned from the zero of the Fahrenheit thermometer, and the poles 83° below zero. The equator would therefore be 55° warmer than at present, and the poles 83° colder. The difference between the temperature of the equator and the poles will in this case amount to 218°.

Now, if we take into account the quantity of positive energy in the form of heat carried by warm currents from the equator to the temperate and polar regions, and also the quantity of negative energy (cold) carried by cold currents from the polar regions to the equator, we shall find that they are sufficient to

reduce the difference of temperature between the poles and the equator from 218° to 80°.

The quantity of heat received in the latitude of London, for example, is to that received at the equator nearly as 128. to 12 This, according to theory, should produce a difference of about 125°. The temperature of the equator above that of space, as we have seen, would be 374°. Therefore 249° above that of space would represent the temperature of the latitude of London. This would give 10° as its temperature. The stoppage of all ocean and aërial currents would thus increase the difference between the equator and the latitude of London by about 85°. The stoppage of ocean-currents would not be nearly so much felt, of course, in the latitude of London as at the equator and the poles, because, as has been already noticed, in all latitudes midway between the equator and the poles the two sets of currents to a considerable extent compensate each other-the warm currents from the equator raise the temperature, while the cold ones from the poles lower it; but as the warm currents chiefly keep on the surface and the cold return-currents are principally under-currents, the heating effect very greatly exceeds the cooling effect. Now, as we have seen, the stoppage of all currents would raise the temperature of the equator 55°; that is to say, the rise at the equator alone would increase the difference of temperature between the equator and that of London by 55°. But the actual difference, as we have seen, ought to be 85°; consequently the temperature of London would be lowered 30° by the stoppage of the currents. For if we raise the temperature of the equator 55° and lower the temperature of London 30°, we then increase the difference by 85°. The normal temperature of the latitude of London being 40°, the stoppage of all ocean and aërial currents would thus reduce it to 10°. But the Gulf-stream raises the actual mean temperature of London 10° above the normal. Consequently 30+10°-40° represents the actual rise at London due to the influence of the Gulf-stream over and above all the lowering effects resulting from arctic currents. On some parts

1

of the American shores on the latitude of London, the temperature is 10° below the normal. The stoppage of all ocean and aërial currents would therefore lower the temperature there only 20°.

It is at the equator and the poles that the great system of ocean and aërial currents produces its maximum effects. The influence becomes less and less as we recede from those places, and between them there is a point where the influence of warm currents from the equator and of cold currents from the poles exactly neutralize each other. At this point the stoppage of ocean-currents would not sensibly affect temperature. This point, of course, is not situated on the same latitude in all meridians, but varies according to the position of the meridian in relation to land, and ocean-currents, whether cold or hot, and other circumstances. A line drawn round the globe through these various points would be very irregular. At one place, such as on the western side of the Atlantic, where the arctic current predominates, the neutral line would be deflected towards the equator, while on the eastern side, where warm currents predominate, the line would be deflected towards the north. It is a difficult problem to determine the mean position of this line; it probably lies somewhere not far north of the tropics.

CHAPTER III.

OCEAN-CURRENTS IN RELATION TO THE DISTRIBUTION OF HEAT

OVER THE GLOBE.-(Continued.)

Influence of the Gulf-stream on the Climate of the Arctic Regions.-Absolute Amount of Heat received by the Arctic Regions from the Sun.-Influence of Ocean-currents shown by another Method.-Temperature of a Globe all Water or all Land according to Professor J. D. Forbes.-An important Consideration overlooked.-Without Ocean-currents the Globe would not be habitable. Conclusions not affected by Imperfection of Data.

Influence of the Gulf-stream on the Climate of the Arctic Regions. Does the Gulf-stream pass into the arctic regions? Are the seas around Spitzbergen and North Greenland heated by the warm water of the stream?

Those who deny this nevertheless admit the existence of an arctic current. They admit that an immense mass of cold water is continually flowing south from the polar regions around Greenland into the Atlantic. If it be admitted, then, that a mass of water flows across the arctic circle from north to south, it must also be admitted that an equal mass flows across from south to north. It is also evident that the water crossing from south to north must be warmer than the water crossing from north to south; for the temperate regions are warmer than the arctic, and the ocean in temperate regions warmer than the ocean in the arctic; consequently the current which flows into the arctic seas, to compensate for the cold arctic. current, must be a warmer current.

Is the Gulf-stream this warm current? Does this compensating warm current proceed from the Atlantic or from the Pacific? If it proceeds from the Atlantic, it is simply the

warm water of the Gulf-stream. We may call it the warm water of the Atlantic if we choose; but this cannot materially affect the question at issue, for the heat which the waters of the Atlantic possess is derived, as we have seen, to an enormous extent from the water brought from the tropics by the Gulf-stream. If we deny that the warm compensating current comes from the Atlantic, then we must assume that it comes from the Pacific. But if the cold current flows from the arctic regions into the Atlantic, and the warm compensating current from the Pacific into the arctic regions, the highest temperature should be found on the Pacific side of the arctic regions and not on the Atlantic side; the reverse, however, is the case.

In the Atlantic, for example, the 41° isothermal line reaches to latitude 65° 30′, while in the Pacific it nowhere goes beyond latitude 57°. The 27° isotherm reaches to latitude 75° in the Atlantic, but in the Pacific it does not pass beyond 64°. And the 14° isotherm reaches the north of Spitzbergen in latitude 80°, whereas on the Pacific side of the arctic regions it does not reach to latitude 72°.

On no point of the earth's surface does the mean annual temperature rise so high above the normal as in the northern Atlantic, just at the arctic circle, at a spot believed to be in the middle of the Gulf-stream. This place is no less than 225 above the normal, while in the northern Pacific the temperature does not anywhere rise more than 9° above the normal. These facts prove that the warm current passes up the Atlantic into the arctic regions and not up the Pacific, or at least that the larger amount of warm water must pass into the arctic regions through the Atlantic. In other words, the Gulf-stream is the warm compensating current. Not only must there be a warm stream, but one of very considerable magnitude, in order to compensate for the great amount of cold water that is constantly flowing from the arctic regions, and also to maintain the temperature of those regions so much above the temperature of space as they actually are.

No doubt, when the results of the late dredging expedition

« AnteriorContinuar »