Imágenes de páginas
PDF
EPUB

during the continuance of the cold period, would become slowly covered over with deposits of sand and clay. On the return of the warm period those deposits would soon become covered with life as before, forming another bed of limestone, and this alternation of life and death would go on as long as the glacial epoch continued.

It is true that in Derbyshire, and in the south of Ireland and some other places, the limestone is found in one mass of several hundred feet in thickness without any beds of sandstone or shale, but then it is nowhere found in one continuous mass from top to bottom without any lines of division. These breaks or divisions may as distinctly mark a cold period as though they had been occupied by beds of sandstone. The marine creatures ceased to exist, and when the rough surface left by their remains became smoothed down by the action of the waves into a flat plain, another bed would begin to form upon this floor so soon as life again appeared. Two agencies working together probably conspired to produce these enormous masess of limestone divided only by breaks marking different periods of elaboration. Corals grow in warm seas, and there only in water of a depth ranging from 20 to 30 fathoms. The cold of a period of glaciation would not only serve to destroy them, but they would be submerged so much beyond the depth proper for their existence that even were it possible that with the submergence a sufficient temperature was left, they would inevitably perish from the superincumbent mass of water. We are therefore, as it seems to me, warranted in concluding that the separate masses of Derbyshire limestone were formed during warm inter-glacial periods, and that the lines of division represent cold periods of glaciation during which the animals perished by the combined influence of cold and pressure of water. The submergence of the coral banks in deep water on a sea-bottom, which, like the land, was characteristically flat and even, implies its carrying away far into the bosom of the ocean, and consequently remote from any continent and the river-borne detritus thereof.

CHAPTER XXVII.

PATH OF THE ICE-SHEET IN NORTH-WESTERN EUROPE AND ITS RELATIONS TO THE BOULDER CLAY OF CAITHNESS.*

Character of Caithness Boulder Clay.-Theories of the Origin of the Caithness Clay. Mr. Jamieson's Theory.-Mr. C. W. Peach's Theory.-The proposed Theory.-Thickness of Scottish Ice-sheet.-Pentlands striated on their Summits.-Scandinavian Ice-sheet.-North Sea filled with Land-ice.-Great Baltic Glacier.-Jutland and Denmark crossed by Ice.-Sir R. Murchison's Observations.-Orkney, Shetland, and Faroe Islands striated across.— Loess accounted for.-Professor Geikie's Suggestion.-Professor Geikie and B. N. Peach's Observations on East Coast of Caithness.-Evidence from Chalk Flints and Oolitic Fossils in Boulder Clay.

The Nature of the Caithness Boulder Clay.-A considerable amount of difficulty has been felt by geologists in accounting for the origin of the boulder clay of Caithness. It is an unstratified clay, of a deep grey or slaty colour, resembling much that of the Caithness flags on which it rests. It is thus de scribed by Mr. Jamieson (Quart. Jour. Geol. Soc., vol. xxii., p. 261):

"The glacial drift of Caithness is particularly interesting as an example of a boulder clay which in its mode of accumulation and ice-scratched débris very much resembles that unstratified stony mud which occurs underneath glaciers-the 'moraine profonde,' as some call it.

"The appearance of the drift along the Haster Burn, and in many other places in Caithness, is in fact precisely the same as that of the old boulder clay of the rest of Scotland, except that it is charged with remains of sea-shells and other marine organisms.

* From Geological Magazine, May and June, 1870; with a few verbal corrections, and a slight re-arrangement of the paragraphs.

"If want of stratification, hardness of texture, and abundance of well-glaciated stones and boulders are to be the tests for what we call genuine boulder clay, then much of the Caithness drift will stand the ordeal."

So far, therefore, as the mere appearance of the drift is concerned, it would at once be pronounced to be true Lower Till, the product of land-ice. But there are two circumstances connected with it which have been generally regarded as fatal to this conclusion.

(1) The striæ on the rocks show that the ice which formed the clay must have come from the sea, and not from the interior of the country; for their direction is almost at right angles to what it would have been had the ice come from the interior. Over the whole district, the direction of the grooves and scratches, not only of the rocks but even of the stones in the clay, is pretty nearly N.W. and S.E. "When examining the sections along the Haster Burn," says Mr. Jamieson, "in company with Mr. Joseph Anderson, I remarked that the striæ on the imbedded fragments generally agreed in direction with those of the rocks beneath. The scratches on the boulders, as usual, run lengthways along the stones when they are of an elongated form; and the position of these stones, as they lie imbedded in the drift, is, as a rule, such that their longer axes point in the same direction as do the scratches on the solid rock beneath; showing that the same agency that scored the rocks also ground and pushed along the drift."

Mr. C. W. Peach informs me that he seldom or never found a stone with two sets of striae on it, a fact indicating, as Mr. Jamieson remarks, that the drift was produced by one great movement invariably in the same direction. Let it be borne in mind that the ice, which thus moved over Caithness in this invariable track, must either have come from the Atlantic to the N.W., or from the Moray Firth to the S.E.

(2) The boulder clay of Caithness is full of sea-shells and other marine remains. The shells are in a broken condition, and are interspersed like the stones through the entire mass of

the clay. Mr. Jamieson states that he nowhere observed any instance of shells being found in an undisturbed condition, "nor could I hear," he says, " of any such having been found; there seems to be no such thing as a bed of laminated silt with shells in situ." The shell-fragments are scratched and iceworn, the same as the stones found in the clay. Not only are the shells glaciated, but even the foraminifera, when seen through the microscope, have a rubbed and worn appearance. The shells have evidently been broken, striated, and pushed along by the ice at the time the boulder clay was being formed.

Theories regarding the Origin of the Caithness Clay.-Mr. Jamieson, as we have seen, freely admits that the boulder clay of Caithness has the appearance of true land-ice till, but from the N.W. and S.E. direction of the stria on the rocks, and the presence of sea-shells in the clay, he has come to the conclusion that the glaciation of Caithness has been effected by floating ice at a time when the district was submerged. I have always felt convinced that Mr. Jamieson had not hit upon the true explanation of the phenomena.

(1) It is physically impossible that any deposit formed by icebergs could be wholly unstratified. Suppose a mass of the materials which would form boulder clay is dropped into the sea from, say an iceberg, the heavier parts, such as stones, will reach the bottom first. Then will follow lighter materials, such as sand, then clay, and last of all the mud will settle down over the whole in fine layers. The different masses dropped from the various icebergs, will, no doubt, lie in confusion one over the other, but each separate mass will show signs of stratification. A good deal of boulder clay evidently has been formed in the sea, but if the clay be unstratified, it must have been formed under glaciers moving along the sea-bottom as on dry ground. Whether unstratified boulder clay may happen. to be formed under water or on dry land, it must in either case be the product of land-ice. Those who imagine that materials,

*See Phil. Mag. for November, 1868, p. 374.

differing in specific gravity like those which compose boulder clay, dropped into water, can settle down without assuming the stratified form, should make the experiment, and they would soon satisfy themselves that the thing is physically impossible. The notion that unstratified boulder clay could be formed by deposits from floating ice, is not only erroneous, but positively pernicious, for it tends to lead those who entertain it astray in regard to the whole question of the origin of drift.

(2) It is also physically impossible that ice-markings, such as those everywhere found on the rocky face of the district, and on the pebbles and shells imbedded in the clay, could have been effected by any other agency than that of land-ice. I need not here enter into any discussion on this point, as this has been done at considerable length in another place.* In the present case, however, it is unnecessary, because if it can be shown that all the facts are accounted for in the most natural manner by the theory of land-ice, no one will contend for the floating-ice theory; for it is admitted that, with the exception of the direction of the stria and the presence of the shells, all the facts agree better with the land-ice than with the floating-ice theory.

My first impression on the subject was that the glaciation of Caithness had been effected by the polar ice-cap, which, during the severer part of the glacial epoch, must have extended down to at least the latitude of the north of Scotland.

On a former occasion (see the Reader for 14th October, 1865) it was shown that all the northern seas, owing to their shallowness, must, at that period, have been blocked up with solid ice, which displaced the water and moved along the seabottoms the same as on dry land. In fact, the northern seas, including the German Ocean, being filled at the time with glacier-ice, might be regarded as dry land. Ice of this sort, moving along the bed of the German Ocean or North Sea, and over Caithness, could not fail to push before it the shells and other animal remains lying on the sea-bottom, and to mix

See Phil. Mag. for November, 1868, pp. 366–374.

« AnteriorContinuar »